Overview of Optimization Problems in Electric Car-Sharing System Design and Management

  • Georg Brandstätter
  • Claudio Gambella
  • Markus Leitner
  • Enrico Malaguti
  • Filippo Masini
  • Jakob Puchinger
  • Mario Ruthmair
  • Daniele VigoEmail author
Part of the Dynamic Modeling and Econometrics in Economics and Finance book series (DMEF, volume 22)


Car-sharing systems are increasingly employing environmentally-friendly electric vehicles. The design and management of Ecar-sharing systems poses several additional challenges with respect to those based on traditional combustion vehicles, mainly related with the limited autonomy allowed by current battery technology. We review the main optimization problems arising in Ecar-sharing systems at strategic, tactical and operational levels, and discuss the existing approaches often developed for similar problems, for example in car-sharing systems with traditional vehicles. We also outline open problems and fruitful research directions.


Electric Vehicle Mixed Integer Programming Vehicle Route Problem Mixed Integer Programming Model Mixed Integer Programming Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is performed within the European project e4-share (Models for Ecological, Economical, Efficient, Electric Car-Sharing) funded by FFG (Austria) under grant 847350, INNOVIRIS (Belgium) and MIUR (Italy) via the Joint Programme Initiative Urban Europe. See for more details. The authors are indebted to two anonymous referees for their useful comments.


  1. Almuhtady, A., Lee, S., Romeijn, E., Wynblatt, M., & Ni, J. (2014). A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles. Transportation Science, 48(4), 609–618. doi:10.1287/trsc.2013.0494.CrossRefGoogle Scholar
  2. Arslan, O., Yıldız, B., & Karasan, O. E. (2014). Minimum cost path problem for plug-in hybrid electric vehicles. Technical Report, Bilkent University, Department of Industrial Engineering, Bilkent, Ankara. Scholar
  3. Artmeier, A., Haselmayr, J., Leucker, M., & Sachenbacher M. (2010). The optimal routing problem in the context of battery-powered electric vehicles. In Second International Workshop on Constraint Reasoning and Optimization for Computational Sustainability, Bologna, Italy.Google Scholar
  4. Asamer, J., Reinthaler, M., Ruthmair, M., Straub, M., & Puchinger, J. (2016). Optimizing charging station locations for urban taxi providers. Transportation Research Part A: Policy and Practice, 85, 233–246.Google Scholar
  5. Baouche, F., Billot, R., Trigui, R., & El Faouzi, N.-E. (2014). Efficient allocation of electric vehicles charging stations: Optimization model and application to a dense urban network. IEEE Intelligent Transportation Systems Magazine, 6(3), 33–43. ISSN 1939–1390, doi:10.1109/mits.2014.2324023.Google Scholar
  6. Barth, M., & Todd, M. (1999). Simulation model performance analysis of a multiple station shared vehicle system. Transportation Research Part C: Emerging Technologies, 7(4), 237–259. ISSN 0968-090X, doi:10.1016/s0968-090x(99)00021-2.Google Scholar
  7. Barth, M., Todd, M., & Xue, L. (2004). User-based vehicle relocation techniques for multiple-station shared-use vehicle systems. In Transportation Research Board, 80th Annual Meeting.
  8. Boyacı, B., Zografos, K. G., & Geroliminis, N. (2015). An optimization framework for the development of efficient one-way car-sharing systems. European Journal of Operational Research, 240(3), 718–IJ733. ISSN 0377-2217, doi:10.1016/j.ejor.2014.07.020.Google Scholar
  9. Bruglieri, M., Colorni, A., & Luè, A. (2014). The vehicle relocation problem for the one-way electric vehicle sharing: An application to the milan case. Procedia - Social and Behavioral Sciences, 111, 18–27. ISSN 1877-0428, doi:10.1016/j.sbspro.2014.01.034.Google Scholar
  10. Cassandras, C. G., Wang, T., & Pourazarm, S. (2014). Energy-aware vehicle routing in networks with charging nodes. Technical Report, Division of Systems Engineering and Center for Information and Systems Engineering, Boston University.
  11. Cavadas, J., Correia, G. H., & Gouveia, J. (2015). A mip model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research Part E: Logistics and Transportation Review, 75, 188–201. ISSN 1366-5545, doi:10.1016/j.tre.2014.11.005.Google Scholar
  12. Cepolina, E. M., & Farina, A. (2012). A new shared vehicle system for urban areas. Transportation Research Part C: Emerging Technologies, 21(1), 230–243. ISSN 0968-090X, doi:10.1016/j.trc.2011.10.005.Google Scholar
  13. Chen, C., & Hua, G. (2014). Optimal deployment of electric vehicle charging and battery swapping stations based on gas station network. International Journal of Control and Automation, 7(5), 247–258. Scholar
  14. Chen, T. D., Kockelman, K. M., & Khan, M. (2013). The electric vehicle charging station location problem: a parking-based assignment method for Seattle. In 92nd Annual Meeting of the Transportation Research Board. Washington DC, USA.
  15. Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581.CrossRefGoogle Scholar
  16. Clemente, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). The vehicle relocation problem in car sharing systems: Modeling and simulation in a petri net framework. Lecture Notes in Computer Science, 7927, 250–269. ISSN 1611-3349, doi: 10.1007/978-3-642-38697-8_14.Google Scholar
  17. Correia, G. H., & Antunes, A. P. (2012). Optimization approach to depot location and trip selection in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 48(1), 233–247. ISSN 1366-5545, doi: 10.1016/j.tre.2011.06.003.Google Scholar
  18. Correia, G. H., Jorge, D. R., & Antunes, D. M. (2014). The added value of accounting for users’ flexibility and information on the potential of a station-based one-way car-sharing system: An application in Lisbon, Portugal. Journal of Intelligent Transportation Systems, 18,(3), 299–308. ISSN 1547-2442, doi: 10.1080/15472450.2013.836928.Google Scholar
  19. Desaulniers, G., Errico, F., Irnich, S., & Schneider, M. (2014). Exact algorithms for electric vehicle-routing problems with time windows. Technical Report, Darmstadt Technical University.Google Scholar
  20. Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2), 283–308. ISSN 0377-2217, doi: 10.1016/j.ejor.2014.08.030.Google Scholar
  21. Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large networks. In 25th AAAI Conference on Artificial Intelligence.
  22. Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100–114. ISSN 1366-5545, doi:10.1016/j.tre.2011.08.001.Google Scholar
  23. Fassi, A. E., Awasthi, A., & Viviani, M. (2012). Evaluation of carsharing network’s growth strategies through discrete event simulation. Expert Systems with Applications, 39(8), 6692–6705. ISSN 0957-4174, doi:10.1016/j.eswa.2011.11.071.Google Scholar
  24. Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71(0), 111–128. ISSN 1366-5545, doi:10.1016/j.tre.2014.09.003.Google Scholar
  25. Frade, I., Ribeiro, A., Gonçalves, G., & Antunes, A. P. (2011). Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record: Journal of the Transportation Research Board, 2252, 91–98. ISSN 0361-1981, doi:10.3141/2252-12.Google Scholar
  26. Frank, S., Preis, H., & Nachtigall, K. (2014). On the modeling of recharging stops in context of vehicle routing problems. In D. Huisman, I. Louwerse, & A. P. Wagelmans, (Eds.), Operations Research Proceedings 2013. Operations Research Proceedings (pp. 129–135). New York: Springer Science + Business Media. doi:10.1007/978-3-319-07001-8_18.Google Scholar
  27. Ge, S., Feng, L., & Liu, H. (2011). The planning of electric vehicle charging station based on grid partition method. In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE. ISBN, doi:10.1109/iceceng.2011.6057636.
  28. Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81–99.CrossRefGoogle Scholar
  29. González, J., Alvaro, R., Gamallo, C., Fuentes, M., Fraile-Ardanuy, J., Knapen, L., et al. (2014). Determining electric vehicle charging point locations considering drivers’ daily activities. Procedia Computer Science, 32(0), 647–654. ISSN 1877-0509, doi:10.1016/j.procs.2014.05.472.; The 5th International Conference on Ambient Systems, Networks and Technologies (ANT-2014), the 4th International Conference on Sustainable Energy Information Technology (SEIT-2014).Google Scholar
  30. Hess, A., Malandrino, F., Reinhardt, M. B., Casetti, C., Hummel, K. A., & Barceló-Ordinas, J. M. (2012). Optimal deployment of charging stations for electric vehicular networks. In Proceedings of the First Workshop on Urban Networking, UrbaNe ’12 (pp. 1–6). New York: ACM. ISBN 978-1-4503-1781-8, doi:10.1145/2413236.2413238.CrossRefGoogle Scholar
  31. Hiermann, G., Puchinger, J., & Hartl R. F. (2014). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Technical Report, Austrian Institute of Technology.Google Scholar
  32. Jorge, D., & Correia, G. H. (2013). Carsharing systems demand estimation and defined operations: a literature review. European Journal of Transport and Infrastructure Research, 13(3), 201–220. Scholar
  33. Jorge, D., Correia, G. H., & Barnhart, C. (2014). Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667–1675. ISSN 1558-0016, doi:10.1109/tits.2014.2304358.Google Scholar
  34. Kek, A. G., Cheu, R. L., & Chor, M. (2006). Relocation simulation model for multiple-station shared-use vehicle systems. Transportation Research Record, 1986(1), 81–88. ISSN 0361-1981, doi:10.3141/1986-13.Google Scholar
  35. Kek, A. G., Cheu, R. L., Meng, Q., & Fung, C. H. (2009). A decision support system for vehicle relocation operations in carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 45(1), 149–158. ISSN 1366-5545, doi:10.1016/j.tre.2008.02.008.Google Scholar
  36. Kempton, W., Tomic, J., Letendre, S., Brooks, A., & Lipman, T. (2001). Vehicle-to-grid power: Battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California. Technical Report UCD-ITS-RR-01-03, University of Delaware.Google Scholar
  37. Kitamura, R. (2002). Sharing electric vehicles in kyoto: Kyoto public car system. {IATSS} Research, 26(1), 86–89 (2002). ISSN 0386-1112, doi:10.1016/S0386-1112(14)60085-6, Scholar
  38. Lee, J., & Park, G.-L. (2013). Planning of relocation staff operations in electric vehicle sharing systems. In Lecture Notes in Computer Science (Vol. 7803, pp. 256–265). New York: Springer Science + Business Media. ISBN, doi:10.1007/978-3-642-36543-0_27.Google Scholar
  39. Li, J.-Q. (2014). Transit bus scheduling with limited energy. Transportation Science, 48(4), 521–539. doi:10.1287/trsc.2013.0468.CrossRefGoogle Scholar
  40. Lin, C., Choy, K., Ho, G., Chung, S., & Lam, H. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4, Part 1), 1118–1138. ISSN 0957-4174, doi:10.1016/j.eswa.2013.07.107.Google Scholar
  41. Luè, A., Colorni, A., Nocerino, R., & Paruscio, V. (2012). Green move: An innovative electric vehicle-sharing system. Procedia - Social and Behavioral Sciences, 48(0), 2978–2987. ISSN 1877-0428, doi:10.1016/j.sbspro.2012.06.1265,; Transport Research Arena 2012.Google Scholar
  42. Mak, H.-Y., Rong, Y., & Shen, Z.-J. M. (2013). Infrastructure planning for electric vehicles with battery swapping. Management Science, 59(7), 1557–1575. doi:10.1287/mnsc.1120.1672, Scholar
  43. Millard-Ball, A., Murray, G., Ter Schure, J., Fox, C., & Burkhardt, J. (2005). Carsharing: Where and how it succeeds. Technical Report TCRP Report 108, TRB, Washington D.C.Google Scholar
  44. Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4), 326–329.CrossRefGoogle Scholar
  45. Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649–672. ISSN 0377-2217, doi:10.1016/j.ejor.2006.04.004.Google Scholar
  46. Nair, R., & Miller-Hooks, E. (2011). Fleet management for vehicle sharing operations. Transportation Science, 45(4), 524–540. ISSN 1526-5447, doi:10.1287/trsc.1100.0347.Google Scholar
  47. Nakayama, S., Yamamoto, T., & Kitamura, R. (2002). Simulation analysis for the management of an electric vehicle-sharing system: Case of the kyoto public-car system. Transportation Research Record, 1791(1), 99–104. ISSN 0361-1981, doi:10.3141/1791-15.Google Scholar
  48. Pelletier, S., Jabali, O., & Laporte, G. (2014). Battery electric vehicles for goods distribution: A survey of vehicle technology, market penetration, incentives and practices. Technical Report, CIRRELT, Montréal, Canada.Google Scholar
  49. Pelletier, S., Jabali, O., & Laporte, G. (2016). 50th anniversary invited article—goods distribution with electric vehicles: review and research perspectives. Transportation Science, 50(1), 3–22.CrossRefGoogle Scholar
  50. Preis, H., Frank, S., & Nachtigall, K. (2013). Energy-optimized routing of electric vehicles in urban delivery systems. In S. Helber, M. Breitner, D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, et al. (Eds.), Operations Research Proceedings 2012. Operations Research Proceedings (pp. 583–588). New York: Springer Science + Business Media. doi:10.1007/978-3-319-00795-3_87.Google Scholar
  51. Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1–17. ISSN 0377-2217, doi:10.1016/j.ejor.2014.01.005.Google Scholar
  52. Sachenbacher, M., Leucker, M., Artmeier, A., & Haselmayr, J. (2011). Efficient energy-optimal routing for electric vehicles. In 25th AAAI Conference on Artificial Intelligence.
  53. Schmöller, S., & Bogenberger, K. (2014). Analyzing external factors on the spatial and temporal demand of car sharing systems. Procedia - Social and Behavioral Sciences, 111, 8–17. ISSN 1877-0428, doi:10.1016/j.sbspro.2014.01.033.Google Scholar
  54. Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520. ISSN 1526-5447, doi:10.1287/trsc.2013.0490.Google Scholar
  55. Sellmair, R., & Hamacher, T. (2014). Method of optimization for the infrastructure of charging station for electric taxis. In Proceedings of the 93rd Annual Meeting of the Transportation Research Board.Google Scholar
  56. Shaheen, S., Sperling, D., & Wagner, C. (1998). Carsharing in Europe and North America: Past, present and future. Transportation Quarterly, 52(3), 35–52.Google Scholar
  57. Stillwater, T., Mokhtarian, P., & Shaheen, S. (2009). Carsharing and the built environment: A GIS-based study of one U.S. operator. Transportation Research Record, 2110, 27–34. Scholar
  58. Van Duin, J., Tavasszy, L. A., & Quak, H. (2013). Towards e(lectric)-urban freight: First promising steps in the electric vehicle revolution. European Transport / Trasporti Europei, 54(9), 1–19. Published online.Google Scholar
  59. Wang, Y.-W., & Lin, C.-C. (2013). Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transportation Research Part E: Logistics and Transportation Review, 58, 76–87. ISSN 1366-5545, doi:10.1016/j.tre.2013.07.003.Google Scholar
  60. Wang, H., Huang, Q., Zhang, C., & Xia, A. A novel approach for the layout of electric vehicle charging station. In The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding. IEEE. ISBN, doi:10.1109/icacia.2010.5709852.
  61. Worley, O., Klabjan, D., & Sweda, T. M. (2012). Simultaneous vehicle routing and charging station siting for commercial electric vehicles. In 2012 IEEE International Electric Vehicle Conference. IEEE. ISBN, doi:10.1109/ievc.2012.6183279.
  62. Xu, K., Yi, P., & Kandukuri, Y. (2013). Location selection of charging stations for battery electric vehicles in an urban area. International Journal of Engineering Research and Science & Technology, 2(3), 15–23. Scholar
  63. Yang, J., & Sun, H. (2014). Battery swap station location-routing problem with capacitated electric vehicles. Computers & Operations Research, 55, 217–232. ISSN 0305-0548, doi:10.1016/j.cor.2014.07.003.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Georg Brandstätter
    • 1
  • Claudio Gambella
    • 2
  • Markus Leitner
    • 1
  • Enrico Malaguti
    • 2
  • Filippo Masini
    • 2
  • Jakob Puchinger
    • 3
    • 4
  • Mario Ruthmair
    • 1
    • 5
  • Daniele Vigo
    • 2
    Email author
  1. 1.Department of Statistics and Operations ResearchUniversity of ViennaViennaAustria
  2. 2.DEI “Guglielmo Marconi”University of BolognaBolognaItaly
  3. 3.Laboratoire Genie IndustrielCentraleSupélec, Université Paris-SaclayChatenay-MalabryFrance
  4. 4.Institut de Recherche Technologique SystemXPalaiseauFrance
  5. 5.Austrian Institute of TechnologyViennaAustria

Personalised recommendations