Advertisement

Remarks on Long Time Versus Steady State Optimal Control

  • Alessio Porretta
  • Enrique Zuazua
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 15)

Abstract

Control problems play a key role in many fields of Engineering, Economics and Sciences. This applies, in particular, to climate sciences where, often times, relevant problems are formulated in long time scales. The problem of the possible asymptotic simplification (as time tends to infinity) then emerges naturally. More precisely, assuming, for instance, that the free dynamics under consideration stabilizes towards a steady state solution, the following question arises: Do time averages of optimal controls and trajectories converge to the steady optimal controls and states as the time-horizon tends to infinity?This question is very closely related to the so-called turnpike property stating that, often times, the optimal trajectory joining two points that are far apart, consists in, departing from the point of origin, rapidly getting close to the steady-state (the turnpike) to stay there most of the time, to quit it only very close to the final destination and time.In this paper we focus on the semilinear heat equation. We prove some partial results and enumerate a number of interesting topics of future research, indicating also some connections with shape design and inverse problems theory.

Keywords

Semilinear heat equations Optimal control problems Long time behavior Steady states Controllability Observability Turnpike property 

AMS subject classification:

49J20 49K20 93C20 49N05 

Notes

Acknowledgements

Enrique Zuazua was partially supported by the Advanced Grant

NUMERIWAVES/FP7-246775 of the European Research Council Executive Agency, the FA9550-14-1-0214 of the EOARD-AFOSR, FA9550-15-1-0027 of AFOSR, the MTM2011-29306 and MTM2014-52347 Grants of the MINECO, and a Humboldt Award at the University of Erlangen-Nürnberg. This work was done while the second author was visiting the Laboratoire Jacques Louis Lions with the support of the Paris City Hall “Research in Paris” program.

References

  1. 1.
    Allaire, G., Münch, A., Periago, F.: Long time behavior of a two-phase optimal design for the heat equation. SIAM J. Control. Optim. 48, 5333–5356 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, B.D.O., Kokotovic, P.V.: Optimal control problems over large time intervals. Autom. J. IFAC 23, 355–363 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cardaliaguet, P., Lasry, J-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw. Heterog. Media 7, 279–301 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cardaliaguet, P., Lasry, J-M., Lions, P.-L., Porretta, A.: Long time average of mean field games in case of nonlocal coupling. SIAM J. Control. Optim. 51, 3558–3591 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Casas, E., Mateos, M.: Optimal Control for Partial Differential Equations. Proccedings of Escuela Hispano Francesa 2016. Oviedo, Spain (to appear)Google Scholar
  6. 6.
    Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22, 261–279 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chichilnisky, G.: What is Sustainable Development? Man-Made Climate Change, pp. 42–82. Physica-Verlag HD, Heidelberg/New York (1999)Google Scholar
  8. 8.
    Choulli, M.: Une introduction aux problèmes inverses elliptiques et paraboliques. Mathematiques & Applications, vol. 65. Springer, Berlin (2009)Google Scholar
  9. 9.
    Damm, T., Grüne, L., Stielerz, M., Worthmann, K.: An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control. Optim. 52, 1935–1957 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grüne, L.: Economic receding horizon control without terminal. Autom. J. IFAC 49, 725–734 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Applied Mathematical Sciences, vol. 127. Springer, New York (2006)Google Scholar
  12. 12.
    Jameson, A.: Optimization methods in computational fluid dynamics (with Ou, K.). In: Blockley, R., Shyy, W. (eds.) Encyclopedia of Aerospace Engineering. John Wiley & Sons, Hoboken (2010)Google Scholar
  13. 13.
    Jendoubi, M.A.: A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nodet, M., Bonan, B., Ozenda O., Ritz, C.: Data Assimilation in Glaciology. Advanced Data Assimilation for Geosciences. Les Houches, France (2012)Google Scholar
  15. 15.
    Porretta A., Zuazua, E.: Long time versus steady state optimal control. SIAM J. Control. Optim. 51, 4242–4273 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1097–1126 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl. 19, 514–544 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Privat, Y., Trélat, E., Zuazua, E.: Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discret. Cont. Dyn. Syst. 35, 6133–6153 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal shape and location of sensors and controllers for parabolic equations with random initial data. Arch. Ration. Mech. Anal. 216, 921–981 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Trélat, E., Zuazua, E.: The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258, 81–114 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)Google Scholar
  22. 22.
    Zaslavski, A.J.: Turnpike properties in the calculus of variations and optimal control. Nonconvex Optimization and its Applications, vol. 80. Springer, New York (2006)Google Scholar
  23. 23.
    Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2), 197–243 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Feireisl E. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527–621. Elsevier Science, Amsterdam/Boston (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  2. 2.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations