Robust Rank-Based and Nonparametric Methods pp 121-139 | Cite as
Rank-Based Inference for Multivariate Data in Factorial Designs
- 2 Citations
- 860 Downloads
Abstract
We introduce fully nonparametric, rank-based test statistics for inference on multivariate data in factorial designs, and derive their asymptotic sampling distribution. The focus here is on the asymptotic setting where the number of levels of one factor tends to infinity, while the number of levels of the other factor, as well as the replication size per factor level combination, are fixed. The resulting test statistics can be calculated directly, they don’t involve any iterative computational procedures. To our knowledge, they provide the first viable approach to a fully nonparametric analysis of, for example, multivariate ordinal responses, or a mix of ordinal with other response variables, in a factorial design setting.
Keywords
Asymptotics Multivariate statistics Nonparametric method Ordinal data Rank testNotes
Acknowledgements
Dedicated to Joe McKean on the occasion of his 70th birthday.
References
- Akritas, M., & Arnold S. (2000). Asymptotics for analysis of variance when the number of levels is large. Journal of the American Statistical association, 95(449), 212–226.MathSciNetCrossRefzbMATHGoogle Scholar
- Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4), 715–726.MathSciNetCrossRefzbMATHGoogle Scholar
- Bathke, A. C. (2002). Anova for a large number of treatments. Mathematical Methods of Statistics, 11(1), 118–132.MathSciNetzbMATHGoogle Scholar
- Bathke, A. C. (2004). The anova F test can still be used in some balanced designs with unequal variances and nonnormal data. Journal of Statistical Planning and Inference, 126(2), 413–422.MathSciNetCrossRefzbMATHGoogle Scholar
- Bathke, A. C., & Harrar, S.W. (2008). Nonparametric methods in multivariate factorial designs for large number of factor levels. Journal of Statistical Planning and Inference, 138(3), 588–610.MathSciNetCrossRefzbMATHGoogle Scholar
- Belloni, A., & Didier, G. (2008). On the Behrens–Fisher problem: A globally convergent algorithm and a finite-sample study of the Wald, LR and LM tests. The Annals of Statistics, 36, 2377–2408.MathSciNetCrossRefzbMATHGoogle Scholar
- Boos, D.D., & Brownie, C. (1995). Anova and rank tests when the number of treatments is large. Statistics & Probability Letters, 23(2), 183–191.MathSciNetCrossRefzbMATHGoogle Scholar
- Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in factorial experiments. New York: Wiley.zbMATHGoogle Scholar
- Chatfield, J. A., Draper, E. A., Cochran, K. D., & Herms, D. A. (2000). Evaluation of crabapples for apple scab at the Secrest Arboretum in Wooster, Ohio. Special circular 177, The Ohio State University, Ohio Agricultural Research and Development Center.Google Scholar
- Girón, F. J., & del Castillo, C. (2010). The multivariate Behrens–Fisher distribution. Journal of Multivariate Analysis, 101(9), 2091–2102.MathSciNetCrossRefzbMATHGoogle Scholar
- Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2006). Asymptotics for testing hypothesis in some multivariate variance components model under non-normality. Journal of Multivariate Analysis, 97, 148–178.MathSciNetCrossRefzbMATHGoogle Scholar
- Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2008). Manova for large hypothesis degrees of freedom under non-normality. Test, 17(1), 120–137.MathSciNetCrossRefzbMATHGoogle Scholar
- Harrar, S. W., & Bathke, A. C. (2008). Nonparametric methods for unbalanced multivariate data and many factor levels. Journal of Multivariate Analysis, 99(8), 1635–1664.MathSciNetCrossRefzbMATHGoogle Scholar
- Harrar, S. W., & Bathke, A. C. (2012). A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations (and erratum). Annals of the Institute of Statistical Mathematics, 64(1 & 5), 135–165 & 1087.Google Scholar
- Harrar, S. W., & Gupta, A. K. (2007) Asymptotic expansion for the null distribution of the f-statistic in one-way anova under non-normality. Annals of the Institute of Statistical Mathematics, 59(3), 531–556.MathSciNetCrossRefzbMATHGoogle Scholar
- Harville, D. A. (2008). Matrix algebra from a statistician’s perspective. Berlin: Springer.zbMATHGoogle Scholar
- Kawasaki, T., & Seo, T. (2015). A two sample test for mean vectors with unequal covariance matrices. Communications in Statistics-Simulation and Computation, 44, 1850–1866.MathSciNetCrossRefzbMATHGoogle Scholar
- Konietschke, F., Bathke, A. C., Harrar, S. W., & Pauly, M. (2015). Parametric and nonparametric bootstrap methods for general MANOVA. Journal of Multivariate Analysis, 140, 291–301.MathSciNetCrossRefzbMATHGoogle Scholar
- Krishnamoorthy, K., & Lu, F. (2010). A parametric bootstrap solution to the MANOVA under heteroscedasticity. Journal of Statistical Computation and Simulation, 80(8), 873–887.MathSciNetCrossRefzbMATHGoogle Scholar
- Krishnamoorthy, K., & Yu, J. (2004). Modified Nel and Van der Merwe test for the multivariate Behrens–Fisher problem. Statistics & Probability Letters, 66(2), 161–169.MathSciNetCrossRefzbMATHGoogle Scholar
- Krishnamoorthy, K., & Yu, J. (2012). Multivariate Behrens–Fisher problem with missing data. Journal of Multivariate Analysis, 105(1), 141–150.MathSciNetCrossRefzbMATHGoogle Scholar
- Kruskal, W. H. (1952). A nonparametric test for the several sample problem. Annals of Mathematical Statistics, 23, 525–540.MathSciNetCrossRefzbMATHGoogle Scholar
- Lévy, P. (1925). Calcul des Probabilités. Paris: Gauthiers-Villars.zbMATHGoogle Scholar
- Nel, D.G., & Van der Merwe, C. A. (1986). A solution to the multivariate Behrens-Fisher problem. Communications in Statistics-Theory and Methods, 15(12), 3719–3735.MathSciNetCrossRefzbMATHGoogle Scholar
- Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 17–19.Google Scholar
- Ruymgaart, F. H. (1980). A unified approach to the asymptotic distribution theory of certain midrank statistics. In Statistique non parametrique asymptotique. Lecture notes on mathematics (Vol. 821). Berlin: Springer.Google Scholar
- Schott, J. R. (2005). Matrix analysis for statistics. Hoboken: Wiley.zbMATHGoogle Scholar
- Serfling, R. (1980). Approximation theorems of mathematical statistics. New York: Wiley.CrossRefzbMATHGoogle Scholar
- Van Aelst, S., & Willems, G. (2011). Robust and efficient one-way MANOVA tests. Journal of the American Statistical Association, 106(494), 706–718.MathSciNetCrossRefzbMATHGoogle Scholar
- Zhang, J. -T. (2011). Two-way MANOVA with unequal cell sizes and unequal cell covariance matrices. Technometrics, 53(4), 426–439.MathSciNetCrossRefGoogle Scholar
- Zhang, J. -T. (2012). An approximate Hotelling T 2-test for heteroscedastic one-way MANOVA. Open Journal of Statistics, 2(1), 1–11.MathSciNetCrossRefGoogle Scholar
- Zhang, J. -T., & Liu, X. (2013). A modified Bartlett test for heteroscedastic one-way MANOVA. Metrika, 76(1), 135–152.MathSciNetCrossRefzbMATHGoogle Scholar