Advertisement

Rank-Based Inference for Multivariate Data in Factorial Designs

  • Arne C. BathkeEmail author
  • Solomon W. Harrar
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 168)

Abstract

We introduce fully nonparametric, rank-based test statistics for inference on multivariate data in factorial designs, and derive their asymptotic sampling distribution. The focus here is on the asymptotic setting where the number of levels of one factor tends to infinity, while the number of levels of the other factor, as well as the replication size per factor level combination, are fixed. The resulting test statistics can be calculated directly, they don’t involve any iterative computational procedures. To our knowledge, they provide the first viable approach to a fully nonparametric analysis of, for example, multivariate ordinal responses, or a mix of ordinal with other response variables, in a factorial design setting.

Keywords

Asymptotics Multivariate statistics Nonparametric method Ordinal data Rank test 

Notes

Acknowledgements

Dedicated to Joe McKean on the occasion of his 70th birthday.

References

  1. Akritas, M., & Arnold S. (2000). Asymptotics for analysis of variance when the number of levels is large. Journal of the American Statistical association, 95(449), 212–226.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4), 715–726.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bathke, A. C. (2002). Anova for a large number of treatments. Mathematical Methods of Statistics, 11(1), 118–132.MathSciNetzbMATHGoogle Scholar
  4. Bathke, A. C. (2004). The anova F test can still be used in some balanced designs with unequal variances and nonnormal data. Journal of Statistical Planning and Inference, 126(2), 413–422.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bathke, A. C., & Harrar, S.W. (2008). Nonparametric methods in multivariate factorial designs for large number of factor levels. Journal of Statistical Planning and Inference, 138(3), 588–610.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Belloni, A., & Didier, G. (2008). On the Behrens–Fisher problem: A globally convergent algorithm and a finite-sample study of the Wald, LR and LM tests. The Annals of Statistics, 36, 2377–2408.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Boos, D.D., & Brownie, C. (1995). Anova and rank tests when the number of treatments is large. Statistics & Probability Letters, 23(2), 183–191.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in factorial experiments. New York: Wiley.zbMATHGoogle Scholar
  9. Chatfield, J. A., Draper, E. A., Cochran, K. D., & Herms, D. A. (2000). Evaluation of crabapples for apple scab at the Secrest Arboretum in Wooster, Ohio. Special circular 177, The Ohio State University, Ohio Agricultural Research and Development Center.Google Scholar
  10. Girón, F. J., & del Castillo, C. (2010). The multivariate Behrens–Fisher distribution. Journal of Multivariate Analysis, 101(9), 2091–2102.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2006). Asymptotics for testing hypothesis in some multivariate variance components model under non-normality. Journal of Multivariate Analysis, 97, 148–178.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2008). Manova for large hypothesis degrees of freedom under non-normality. Test, 17(1), 120–137.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Harrar, S. W., & Bathke, A. C. (2008). Nonparametric methods for unbalanced multivariate data and many factor levels. Journal of Multivariate Analysis, 99(8), 1635–1664.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Harrar, S. W., & Bathke, A. C. (2012). A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations (and erratum). Annals of the Institute of Statistical Mathematics, 64(1 & 5), 135–165 & 1087.Google Scholar
  15. Harrar, S. W., & Gupta, A. K. (2007) Asymptotic expansion for the null distribution of the f-statistic in one-way anova under non-normality. Annals of the Institute of Statistical Mathematics, 59(3), 531–556.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Harville, D. A. (2008). Matrix algebra from a statistician’s perspective. Berlin: Springer.zbMATHGoogle Scholar
  17. Kawasaki, T., & Seo, T. (2015). A two sample test for mean vectors with unequal covariance matrices. Communications in Statistics-Simulation and Computation, 44, 1850–1866.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Konietschke, F., Bathke, A. C., Harrar, S. W., & Pauly, M. (2015). Parametric and nonparametric bootstrap methods for general MANOVA. Journal of Multivariate Analysis, 140, 291–301.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Krishnamoorthy, K., & Lu, F. (2010). A parametric bootstrap solution to the MANOVA under heteroscedasticity. Journal of Statistical Computation and Simulation, 80(8), 873–887.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Krishnamoorthy, K., & Yu, J. (2004). Modified Nel and Van der Merwe test for the multivariate Behrens–Fisher problem. Statistics & Probability Letters, 66(2), 161–169.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Krishnamoorthy, K., & Yu, J. (2012). Multivariate Behrens–Fisher problem with missing data. Journal of Multivariate Analysis, 105(1), 141–150.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Kruskal, W. H. (1952). A nonparametric test for the several sample problem. Annals of Mathematical Statistics, 23, 525–540.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Lévy, P. (1925). Calcul des Probabilités. Paris: Gauthiers-Villars.zbMATHGoogle Scholar
  24. Nel, D.G., & Van der Merwe, C. A. (1986). A solution to the multivariate Behrens-Fisher problem. Communications in Statistics-Theory and Methods, 15(12), 3719–3735.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 17–19.Google Scholar
  26. Ruymgaart, F. H. (1980). A unified approach to the asymptotic distribution theory of certain midrank statistics. In Statistique non parametrique asymptotique. Lecture notes on mathematics (Vol. 821). Berlin: Springer.Google Scholar
  27. Schott, J. R. (2005). Matrix analysis for statistics. Hoboken: Wiley.zbMATHGoogle Scholar
  28. Serfling, R. (1980). Approximation theorems of mathematical statistics. New York: Wiley.CrossRefzbMATHGoogle Scholar
  29. Van Aelst, S., & Willems, G. (2011). Robust and efficient one-way MANOVA tests. Journal of the American Statistical Association, 106(494), 706–718.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Zhang, J. -T. (2011). Two-way MANOVA with unequal cell sizes and unequal cell covariance matrices. Technometrics, 53(4), 426–439.MathSciNetCrossRefGoogle Scholar
  31. Zhang, J. -T. (2012). An approximate Hotelling T 2-test for heteroscedastic one-way MANOVA. Open Journal of Statistics, 2(1), 1–11.MathSciNetCrossRefGoogle Scholar
  32. Zhang, J. -T., & Liu, X. (2013). A modified Bartlett test for heteroscedastic one-way MANOVA. Metrika, 76(1), 135–152.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität SalzburgSalzburgAustria
  2. 2.Department of StatisticsUniversity of KentuckyLexingtonUSA

Personalised recommendations