Universal Meshes for the Simulation of Brittle Fracture and Moving Boundary Problems

  • Maurizio M. Chiaramonte
  • Evan S. Gawlik
  • Hardik Kabaria
  • Adrian J. Lew
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 81)

Abstract

Universal meshes have recently appeared in the literature as a computationally efficient and robust paradigm for the generation of conforming simplicial meshes for domains with evolving boundaries. The main idea behind a universal mesh is to immerse the moving boundary in a background mesh (the universal mesh), and to produce a mesh that conforms to the moving boundary at any given time by adjusting a few elements of the background mesh. In this manuscript we present the application of universal meshes to the simulation of brittle fracturing. To this extent, we provide a high level description of a crack propagation algorithm and showcase its capabilities. Alongside universal meshes for the simulation of brittle fracture, we provide other examples for which universal meshes prove to be a powerful tool, namely fluid flow past moving obstacles. Lastly, we conclude the manuscript with some remarks on the current state of universal meshes and future directions.

References

  1. 1.
    Angelillo, M., Babilio, E., & Fortunato, A. (2012). Numerical solutions for crack growth based on the variational theory of fracture. Computational Mechanics, 50(3), 285–301.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Armando Duarte, C., & Tinsley Oden, J. (1996). An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 237–262.Google Scholar
  3. 3.
    Azócar, D., Elgueta, M., & Rivara, M. C. (2010). Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement. Advances in Engineering Software, 41, 111–119.CrossRefMATHGoogle Scholar
  4. 4.
    Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601–620.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bittencourt, T. N., Wawrzynek, P. A., Ingraffea, A. R., & Sousa, J. L. (1996). Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55, 321–334.CrossRefGoogle Scholar
  6. 6.
    Bourdin, B., Francfort, G. A., & Marigo, J.-J. (2000). Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4), 797–826.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20–22), 2899–2938.CrossRefMATHGoogle Scholar
  8. 8.
    Chiaramonte, M. M., Keer, L. M., & Lew, A. J. (2015). Crack path instabilities in thermoelasticity.Google Scholar
  9. 9.
    Chiaramonte, M. M., Shen, Y., Keer, L. M., & Lew, A. J. (2015). Computing stress intensity factors for curvilinear cracks. International Journal For Numerical Methods in Engineering.Google Scholar
  10. 10.
    Chiaramonte, M. M., Shen, Y., & Lew, A. J. (2015). The h-version of the method of auxiliary mapping for higher order solutions of crack and re-entrant corner problem.Google Scholar
  11. 11.
    Cotterell, B., & Rice, J. R. (1965). Slightly curved or kinked cracks. International Journal of Fracture Mechanics, 16, 155–168.CrossRefGoogle Scholar
  12. 12.
    Fraternali, F. (2007). Free discontinuity finite element models in two-dimensions for in-plane crack problems. Theoretical and Applied Fracture Mechanics, 47(3), 274–282.CrossRefGoogle Scholar
  13. 13.
    Gawlik, E. S., & Lew, A. J. (2014). High-order finite element methods for moving boundary problems with prescribed boundary evolution. Computer Methods in Applied Mechanics and Engineering, 278, 314–346.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gawlik, E. S., & Lew, A. J. (2015). Supercloseness of orthogonal projections onto nearby finite element spaces. Mathematical Modelling and Numerical Analysis, 49, 559–576.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gawlik, E. S. & Lew, A. J. (2015). Unified analysis of finite element methods for problems with moving boundaries. SIAM Journal on Numerical Analysis.Google Scholar
  16. 16.
    Gawlik, E. S., Kabaria, H., & Lew, A. J. (2015). High-order methods for low reynolds number flows around moving obstacles based on universal meshes. International Journal for Numerical Methods in Engineering.Google Scholar
  17. 17.
    Germanovich, L., Murdoch, L. C., & Robinowitz, M. (2014). Abyssal sequestration of nuclear waste and other types of hazardous waste.Google Scholar
  18. 18.
    Giacomini, A., & Ponsiglione, M. (2006). Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Mathematical Models and Methods in Applied Sciences, 16(01), 77–118.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gol’dstein, R. V., & Salganik, R. L. (1974). Brittle fracture of solids with arbitrary cracks. International Journal of Fracture, 10(4), 507–523.CrossRefGoogle Scholar
  20. 20.
    Ingraffea, A. R., & Grigoriu, M. (1990). Probabilistic fracture mechanics: A validation of predictive capability. Technical report, Cornell University.Google Scholar
  21. 21.
    Kabaria, H., & Lew, A. J. (In preparation). Universal meshes for smooth surfaces with no boundary in three dimensions. International Journal for Numerical Methods in Engineering.Google Scholar
  22. 22.
    Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 289–314.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Miehe, C., & Gürses, E. (2007). A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. International Journal for Numerical Methods in Engineering, 72(2), 127–155.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Moes, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46, 131–150.CrossRefMATHGoogle Scholar
  25. 25.
    Muskhelishvili, N. I. (Ed.). (1977). Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending (translated from Russian) (2nd ed.). Leyden, The Netherlands: Noordhoff International Publishing.Google Scholar
  26. 26.
    Negri, M. (2005). A discontinuous finite element approach for the approximation of free discontinuity problems. Advances in Mathematical Sciences and Applications, 15, 283–306.MathSciNetMATHGoogle Scholar
  27. 27.
    Ortiz, M. (1996). Computational micromechanics. Computational Mechanics, 18(5), 321–338.CrossRefMATHGoogle Scholar
  28. 28.
    Pandolfi, A., & Ortiz, M. (1998). Solid modeling aspects of three-dimensional fragmentation. Engineering with Computers, 14(4), 287–308.CrossRefMATHGoogle Scholar
  29. 29.
    Pandolfi, A., & Ortiz, M. (2012). An eigenerosion approach to brittle fracture. International Journal for Numerical Methods in Engineering, 92(8), 694–714.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pandolfi, A., Krysl, P., & Ortiz, M. (1999). Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture. International Journal of Fracture, 95(1–4), 279–297.CrossRefGoogle Scholar
  31. 31.
    Pandolfi, A., Li, B., & Ortiz, M. (2012). Modeling fracture by material-point erosion. International Journal of Fracture, 184(1–2), 3–16.Google Scholar
  32. 32.
    Phongthanapanich, S., & Dechaumphai, P. (2004). Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40, 1753–1771.CrossRefGoogle Scholar
  33. 33.
    Rangarajan, R. & Lew, A. J. (2013). Analysis of a method to parameterize planar curves immersed in triangulations. SIAM Journal on Numerical Analysis, 51(3), 1392–1420.Google Scholar
  34. 34.
    Rangarajan, R., & Lew, A. J. (2014). Universal meshes: A method for triangulating planar curved domains immersed in nonconforming triangulations. International Journal for Numerical Methods in Engineering, 98(4), 236–264.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rangarajan, R., Chiaramonte, M. M., Hunsweck, M. J., Shen, Y., & Lew, A. J. (2014). Simulating curvilinear crack propagation in two dimensions with universal meshes. International Journal for Numerical Methods in Engineering.Google Scholar
  36. 36.
    Ruiz, G., Pandolfi, A., & Ortiz, M. (2001). Three dimensional cohesive modeling of dynamic mixed-mode fracture. International Journal for Numerical Methods in Engineering, 52(12), 97–120.CrossRefGoogle Scholar
  37. 37.
    Schmidt, B., Fraternali, F., & Ortiz, M. (2009). Eigenfracture: An eigendeformation approach to variational fracture. Multiscale Modeling & Simulation, 7(3), 1237–1266.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Yuse, A., & Sano, M. (1997). Instabilities of quasi-static crack patterns in quenched glass plates. Physica D: Nonlinear Phenomena, 108(4), 365–378.CrossRefGoogle Scholar
  39. 39.
    Zielonka, M. G., Ortiz, M., & Marsden, J. E. (2008). Variational r-adaption in elastodynamics. International Journal for Numerical Methods in Engineering, 74(7), 1162–1197.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maurizio M. Chiaramonte
    • 1
  • Evan S. Gawlik
    • 1
  • Hardik Kabaria
    • 1
  • Adrian J. Lew
    • 1
  1. 1.Department of Mechanical Engineering and Institute for Computational and Mathematical EngineeringStanford UniversityStanfordUSA

Personalised recommendations