Thermo-mechanical Behavior of Confined Granular Systems

  • Gülşad KüçükEmail author
  • Marcial Gonzalez
  • Alberto M. Cuitiño
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 81)


We present a mathematical formulation that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanical behavior of consolidated granular systems. The model assumes quasi-static equilibrium and quasi-steady heat conduction conditions that are appropriate for many thermally-assisted manufacturing processes. We perform a parametric study that explores the effect of applied thermal and mechanical loads, and of particles’ thermal expansion. The nonlinearity of the multi-physics problem reveals that thermo-mechanical coupling enhances the effective thermal conductivity and mechanical stiffness by directly impacting the interrelation between contact conductance and overlapping between the particles. Alterations in temperature profiles and displacements of particles are significant for materials with higher thermal expansion coefficients. In this regards, it is worth noting that the results of the proposed thermo-mechanical model depart from those of conventional compaction models based on a continuum mechanics description.


Discrete Element Method Effective Thermal Conductivity Granular Medium Granular System Effective Medium Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially supported by U.S. Army ARDEC grant under the project titled as: Multifunctional Nanomaterials: Processing, Properties, and Applications. The authors would also like to acknowledge the support provided by the National Science Foundation Engineering Research Center for Structured Organic Particle Systems (C-SOPS).


  1. 1.
    Vargas-Escobar, W. L. (2002). Discrete modeling of heat conduction in granular media. Ph.D. thesis, University of Pittsburgh.Google Scholar
  2. 2.
    Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. M. (1999). Why effective medium theory fails in granular materials. Physical Review Letters, 83(24), 5070–5073.CrossRefGoogle Scholar
  3. 3.
    Makse, H. A., Gland, N., Johnson, D. L., & Schwartz, L. (2001). The apparent failure of effective medium theory in granular materials. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(1), 107–111.CrossRefGoogle Scholar
  4. 4.
    Hertz, H. (1881). On the contact of elastic solids. Journal für die reine und angewandte Mathematik, 92(156–171), 110.Google Scholar
  5. 5.
    Mindlin, R. D. (1949). Compliance of elastic bodies in contact. Journal of Applied Mechanics, 16.Google Scholar
  6. 6.
    Mindlin, R. D., & Deresiewicz, H. (1953). Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20.Google Scholar
  7. 7.
    Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62(13), 3378–3396.CrossRefGoogle Scholar
  8. 8.
    Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.CrossRefGoogle Scholar
  9. 9.
    Feng, Y. T., Han, K., Li, C. F., & Owen, D. R. J. (2008). Discrete thermal element modelling of heat conduction in particle systems: Basic formulations. Journal of Computational Physics, 227(10), 5072–5089.CrossRefzbMATHGoogle Scholar
  10. 10.
    Zheng, S., & Cuitino, A. M. (2002). Consolidation behavior of inhomogeneous granular beds of ductile particles using a mixed discrete-continuum approach. Kona, 20, 168–177.CrossRefGoogle Scholar
  11. 11.
    Koynov, A., Akseli, I., & Cuitiño, A. M. (2011). Modeling and simulation of compact strength due to particle bonding using a hybrid discrete-continuum approach. International Journal of Pharmaceutics, 418(2), 273–285.CrossRefGoogle Scholar
  12. 12.
    Vargas, W. L., & McCarthy, J. J. (2001). Heat conduction in granular materials. AIChE Journal, 47(5), 1052–1059.Google Scholar
  13. 13.
    Batchelor, G. K., & O’Brien, R. W. (1977). Thermal or electrical conduction through a granular material. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 355(1682), 313–333.CrossRefGoogle Scholar
  14. 14.
    Chan, C. K., & Tien, C. L. (1973). Conductance of packed spheres in vacuum. Journal of Heat Transfer (United States), 95(3).Google Scholar
  15. 15.
    Kaganer, M. G. (1966). Contact heat transfer in granular material under vacuum. Journal of Engineering Physics, 11(1), 19–22.CrossRefGoogle Scholar
  16. 16.
    Hadley, G. R. (1986). Thermal conductivity of packed metal powders. International Journal of Heat and Mass Transfer, 29(6), 909–920.CrossRefGoogle Scholar
  17. 17.
    Nozad, I., Carbonell, R. G., & Whitaker, S. (1985). Heat conduction in multiphase systems—II: Experimental method and results for three-phase systems. Chemical Engineering Science, 40(5), 857–863.CrossRefGoogle Scholar
  18. 18.
    Shonnard, D. R., & Whitaker, S. (1989). The effective thermal conductivity for a pointcontact porous medium: An experimental study. International Journal of Heat and Mass Transfer, 32(3), 503–512.CrossRefGoogle Scholar
  19. 19.
    Sridhar, M. R., & Yovanovich, M. M. (1996). Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. Transactions-American Society of Mechanical Engineers Journal of Heat Transfer, 118, 3–9.CrossRefGoogle Scholar
  20. 20.
    Bahrami, M., Yovanovich, M. M., & Culham J. R., et al. (2005). A compact model for spherical rough contacts. Transactions-American Society of Mechanical Engineers Journal of Tribology, 127(4), 884.Google Scholar
  21. 21.
    Fletcher, L. S. (1988). Recent developments in contact conductance heat transfer. ASME Transactions Journal of Heat Transfer, 110, 1059–1070.CrossRefGoogle Scholar
  22. 22.
    Majumdar, A., & Tien, C. L. (1991). Fractal network model for contact conductance. Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C;(United States), 113(3).Google Scholar
  23. 23.
    Majmudar, T. S., & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature, 435(7045), 1079–1082.Google Scholar
  24. 24.
    Gonzalez, M., & Cuitiño, A. M. (2012). A nonlocal contact formulation for confined granular systems. Journal of the Mechanics and Physics of Solids, 60(2), 333–350.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chen, K., Cole, J., Conger, C., Draskovic, J., Lohr, M., Klein, K., et al. (2006). Granular materials: Packing grains by thermal cycling. Nature, 442(7100), 257–257.CrossRefGoogle Scholar
  26. 26.
    Vargas, W. L., & McCarthy J. J. (2007). Thermal expansion effects and heat conduction in granular materials. Physical Review E, 76(4), 041301.Google Scholar
  27. 27.
    Johnson, K. L. (1987). Contact mechanics. Cambridge University press.Google Scholar
  28. 28.
    Lu, Z., Abdou, M., & Ying, A. (2001). 3d micromechanical modeling of packed beds. Journal of nuclear materials, 299(2), 101–110.Google Scholar
  29. 29.
    Siu, W. W. M., & Lee, S. H.-K. (2004). Transient temperature computation of spheres in three-dimensional random packings. International Journal of Heat and Mass Transfer, 47(5), 887–898.CrossRefzbMATHGoogle Scholar
  30. 30.
    Walton, K. (1975). The effective elastic moduli of model sediments. Geophysical Journal of the Royal Astronomical Society, 43(2), 293–306.CrossRefzbMATHGoogle Scholar
  31. 31.
    Markov, K. Z. (2000). Elementary micromechanics of heterogeneous media. In Heterogeneous media (pp. 1–162). Springer.Google Scholar
  32. 32.
    Norris, A. N., & Johnson, D. L. (1997). Nonlinear elasticity of granular media. Transactions-American Society of Mechanical Engineers Journal of Applied Mechanics, 64, 39–49.CrossRefzbMATHGoogle Scholar
  33. 33.
    Vargas, W. L., & McCarthy, J. J. (2002). Stress effects on the conductivity of particulate beds. Chemical Engineering Science, 57(15), 3119–3131.CrossRefGoogle Scholar
  34. 34.
    Siu, W. W. M., & Lee, S. H.-K. (2000). Effective conductivity computation of a packed bed using constriction resistance and contact angle effects. International Journal of Heat and Mass Transfer, 43(21), 3917–3924.CrossRefzbMATHGoogle Scholar
  35. 35.
    Landau, L. D., & Lifshitz, E. M. (1959). Theory of elasticity. Pergamon Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gülşad Küçük
    • 1
    Email author
  • Marcial Gonzalez
    • 2
  • Alberto M. Cuitiño
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscatawayUSA
  2. 2.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations