Mathematical Models of Time as a Heuristic Tool

  • Emiliano IppolitiEmail author
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 27)


This paper sets out to show how mathematical modelling can serve as a way of ampliating knowledge. To this end, I discuss the mathematical modelling of time in theoretical physics. In particular I examine the construction of the formal treatment of time in classical physics, based on Barrow’s analogy between time and the real number line, and the modelling of time resulting from the Wheeler-DeWitt equation. I will show how mathematics shapes physical concepts, like time, acting as a heuristic means—a discovery tool—, which enables us to construct hypotheses on certain problems that would be hard, and in some cases impossible, to understand otherwise.


Formalism Heuristics Time Mathematics Modelling 



I would like to thank Sergio Caprara, Angleo Vulpiani and the other friends at the Dept. of Physics—Sapienza University of Rome for the fruitful dialogues about technical as well as theoretical issues. I would also like to thank the two anonymous referees for their comments and suggestions that helped me to improve the paper.


  1. Abbott, A. (2004). Method of discovery. New York: W.W. Norton & Company Inc.Google Scholar
  2. Barrow, I. (1660). Letiones geometricae (J. M. Child, Trans., 1916). The geometrical lectures of isaac barrow. London: The Open Court Publishing Company.Google Scholar
  3. Bolzano, B. (1817). Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege. Prague. (S. B. Russ “A Translation of Bolzano’s Paper on the Intermediate Value Theorem”, Trans.) History of Mathematics, 7, 156–185, 1980.Google Scholar
  4. Brown, H. (2015). Against interpretation in mathematical physics. Draft.Google Scholar
  5. Bunge, M. (1981). Analogy in quantum theory: From insight to nonsense. The British Journal for the Philosophy of Science, 18(4), 265–286.CrossRefGoogle Scholar
  6. Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
  7. Carazza, B., & Kragh, H. (1995). Heisenberg’s lattice world: The 1930 theory sketch. American Journal of Physics, 63, 595.CrossRefGoogle Scholar
  8. Cellucci, C. (2013). Rethinking logic. New York: Springer.Google Scholar
  9. Cellucci, C. (2015). Naturalizing the applicability of mathematics. Paradigmi Rivista di critica filosofica, 2, 23–42.Google Scholar
  10. Connes, A., & Rovelli, C. (1994). Von neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories. Classical and Quantum Gravity, 11, 2899–2918.CrossRefGoogle Scholar
  11. Darden, L. (Ed.). (2006). Reasoning in biological discoveries: Essays on mechanisms, inter-field relations, and anomaly resolution. New York: Cambridge University Press.Google Scholar
  12. Devito, C. L. (1997). A non-linear model for time. In W. G. Tifft & Cocke, W. J. (Eds.), Modern mathematical models of time and their applications to physics and cosmology (pp. 357–370). Springer.Google Scholar
  13. Devlin, K. (2000). The math gene: How mathematical thinking evolved and why numbers are like gossip. New Tork: Basic Books.Google Scholar
  14. DeWitt, B. S. (1967). Quantum theory of gravity. I. The canonical theory. Physical Review, 160, 1113.CrossRefGoogle Scholar
  15. Everett, H. (1957). Relative state formulation of quantum mechanics. Reviews of Modern Physics, 29, 454–462.CrossRefGoogle Scholar
  16. Fabri, E. (2005). Insegnare relatività nel XXI secolo. Bollettino trimestrale dell’Associazione Italiana per l’insegnamento della fisica. XXXVIII (2). Supplemento.Google Scholar
  17. Feynman, R. (1963). Six easy pieces. New York: Basic Books.Google Scholar
  18. Feynman, R. (1977). Lectures on physics. Addison Wesley.Google Scholar
  19. Gertner, J. (2012). The idea factory. New York: Penguin Press.Google Scholar
  20. Gillies, D. (1995). Revolutions in mathematics. Oxford: Oxford University Press.Google Scholar
  21. Grosholz, E. (2007). Representation and productive ambiguity in mathematics and the sciences. Oxford: Oxford University Press.Google Scholar
  22. Grosholz, E., & Breger, H. (Eds.). (2000). The growth of mathematical knowledge. Dordercht: Springer.Google Scholar
  23. Hagar, A. (2014). Discrete or continuous? The quest for fundamental length in modern physics. New York: Cambridge University Press.CrossRefGoogle Scholar
  24. Hanson, N. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.Google Scholar
  25. Heisenberg, W. (1930). The self-energy of the electron. In A. Miller (Ed.), Early quantum electrodynamics (pp. 121–128). Cambridge: Cambridge University Press 1994.Google Scholar
  26. Ippoliti, E. (2006). Demonstrative and non-demonstrative reasoning by analogy. In C. Cellucci & P. Pecere (Eds.), Demonstrative and non-demonstrative reasoning in mathematics and natural science (pp. 309–338). Cassino: Edizioni dell’Università di Cassino.Google Scholar
  27. Ippoliti, E. (2011). Between data and hypotheses. In C. Cellucci, E. Grosholz, & E. Ippoliti (Eds.), Logic and knowledge. Newcastle Upon Tyne: Cambridge Scholars Publishing.Google Scholar
  28. Ippoliti, E. (2013). Generation of hypotheses by ampliation of data. In L. Magnani (Ed.), Model-based reasoning in science and technology (pp. 247–262). Berlin: Springer.Google Scholar
  29. Ippoliti, E. (Ed.). (2014). Heuristic reasoning. London: Springer.Google Scholar
  30. Johnson, M. (1988). Some constraints on embodied analogical understanding. In D. H. Helman (Ed.), Analogical reasoning: Perspectives of artificial intelligence, cognitive science, and philosophy. Dordrecht: Kluwer.Google Scholar
  31. Kvasz, L. (2008). Patterns of change. Linguistic innovations in the development of classical mathematics. Basel: Birkhäuser.Google Scholar
  32. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Lakoff, G., & Nuñez, R. (2001). Where mathematics come from: How the embodied mind brings mathematics. New York: Basics Books.Google Scholar
  34. Laudan, L. (1977). Progress and its problems. Berkeley and LA: University of California press, California.Google Scholar
  35. Magnani, L. (2001). Abduction, reason, and science. Processes of discovery and explanation. New York: Kluwer Academic.CrossRefGoogle Scholar
  36. Magnani, L. (2013). Model-based reasoning in science and technology. Berlin: Springer.Google Scholar
  37. Magnani, L., & Li, P. (Eds.). (2007). Model-based reasoning in science, technology, and medicine. London: Springer.Google Scholar
  38. Magnani, L., Carnielli, W., & Pizzi, C. (Eds.). (2010). Model-based reasoning in science and technology: Abduction, logic, and computational discovery. Heidelber: Springer.Google Scholar
  39. Morrison, M. (2000). Unifying scientific theories. New York: Cambridge University Press.CrossRefGoogle Scholar
  40. Nickles, T. (Ed.). (1980a). Scientific discovery: Logic and rationality. Boston: Springer.Google Scholar
  41. Nickles, T. (Ed.). (1980b). Scientific discovery: Case studies. Boston: Springer.Google Scholar
  42. Nickles, T., & Meheus, J. (Eds.). (2009). Methods of discovery and creativity. New York: Springer.Google Scholar
  43. Parentani, R. (1997). Interpretation of the solutions of the Wheeler-DeWitt equation. Physical Review D, 56(8), 4618–4624.CrossRefGoogle Scholar
  44. Peres, A. (1999). Critique of the Wheeler-DeWitt equation. In A. Harvey (Ed.), On Einstein’s path (pp. 367–379). New York: Springer-Verlag.CrossRefGoogle Scholar
  45. Piaget, J., & Cook, M. T. (1952). The origins of intelligence in children. New York: International University Press.CrossRefGoogle Scholar
  46. Polya, G. (1954). Mathematics and plausible reasoning. Princeton: Princeton University Pres.Google Scholar
  47. Rovelli, C. (2001). Notes for a brief history of quantum gravity. arXiv:gr-qc/0006061v3.
  48. Simon, H. (1977). Models of discovery. Dordrecht: Reidel.CrossRefGoogle Scholar
  49. Simon, H., Langley, P., Bradshaw, G., & Zytkow, J. (Eds.). (1987). Scientific discovery: Computational explorations of the creative processes. Boston: MIT Press.Google Scholar
  50. Turner, M. (1988). Categories and analogies. In D. H. Helman (Ed.), Analogical reasoning: Perspectives of artificial intelligence, cognitive science, and philosophy. Dordrecht: Kluwer.Google Scholar
  51. Turner, M. (2005). The literal versus figurative dichotomy. In S. Coulson & B. Lewandowska-Tomaszczyk (Eds.), The literal and nonliteral in language and thought (pp. 25–52). Frankfurt: Peter Lang.Google Scholar
  52. Tzanakis, C. (2002a). On the relation between mathematics and physics in undergraduate teaching. In I. Vakalis, et al. (Eds.), 2nd international conference on the teaching of mathematics (at the undergraduate level) (p. 387). New York, NY: Wiley.Google Scholar
  53. Tzanakis, C. (2002b). Unfolding interrelations between mathematics and physics, in a presentation motivated by history: Two examples. International Journal of Mathematical Education in Science and Technology, 30(1), 103–118.CrossRefGoogle Scholar
  54. Weisberg, R. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken (NJ): John Wiley & Sons.Google Scholar
  55. Windred, G. (1933a). The history of mathematical time: I. Isis, 19(1), 121–53.Google Scholar
  56. Windred, G. (1933b). The history of mathematical time: II. Isis, 20(1), 192–219.Google Scholar
  57. Windred, G. (1935). The interpretation of imaginary mathematical time. The Mathematical Gazette, 19(235), 280–290.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhilosophySapienza University of RomeRomeItaly

Personalised recommendations