Abduction in One Intelligence Test. Types of Reasoning Involved in Solving Raven’s Advanced Progressive Matrices

  • Małgorzata Kisielewska
  • Mariusz Urbański
  • Katarzyna Paluszkiewicz
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 27)


Given that Raven’s Advanced Progressive Matrices (APM) as an intelligence test with robust psychometric properties is considered to be a good measure of reasoning ability component of general intelligence, particularly its fluid factor, one would expect that uncovering the determinants of APM performance, especially reasoning patterns, could significantly contribute to understanding of intelligence. Our aim in this study was to identify types of reasoning processes involved in solving Raven’s Advanced Progressive Matrices test. To this end we carried out two studies: one involving eliciting verbal protocols in the form of Socratic tutorial dialogues and one involving controlling eye-fixation patterns. Results suggest that hypotheses generation and testing, involved in solving APM tasks, essentially amounts to abductive reasoning.


Test Item Verbal Report Verbal Protocol Abductive Reasoning Propositional Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research reported in this paper were supported by the National Science Centre, Poland (DEC-2013/10/E/HS1/00172).


  1. Ajdukiewicz, K. (1974). Pragmatic logic (O. Wojtasiewicz, trans.). Dordrecht: D. Reidel.Google Scholar
  2. Blair, C. (2010). Fluid cognitive abilities and general intelligence. In R. M. Lerner, W. F. Overton, A. M. Freund & M. E. Lamb (Eds.), The handbook of life-span development. Wiley.Google Scholar
  3. Bors, D., & Stokes, T. (1998). Raven’s Advanced Progressive Matrices: Norms for first-year university students and the development of a short form. Educational and Psychological Measurement, 58(3), 382–398.CrossRefGoogle Scholar
  4. Carpenter, P., Just, M., & Shell, P. (1990). What one intelligence test measures: a theoretical account of the processing in the raven progressive matrices test. Psychological Review, 97(3), 404–431.CrossRefGoogle Scholar
  5. Chan, C. S. (2014). Style and creativity in design (Vol. 17). Berlin: Springer.Google Scholar
  6. DeShon, R., Chan, D., & Weissbein, D. (1995). Verbal overshadowing effects on Raven’s Advanced Progressive Matrices: Evidence for multidimensional performance determinants. Intelligence, 21(2), 135–155.CrossRefGoogle Scholar
  7. Forbus, K., Lovett, A., & Usher, J. (2010). A structure-mapping model of Raven’s Progressive Matrices. Proceedings of CogSci, 10, 2761–2766.Google Scholar
  8. Gabbay, D., & Woods, J. (2005). The practical turn in logic. In G. M. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (2nd Ed., pp. 15–122). Berlin: Springer.Google Scholar
  9. Gittler, G., & Wuerfeltest D. (1990). Ein rasch-skalierter test zur messung des raeumlichen vorstellungsvermoegens. Theoretische grundlagen und manual. Beltz Test, Weinheim.Google Scholar
  10. Hayes, J. (1978). Cognitive psychology: Thinking and creating. Belmont: Dorsey.Google Scholar
  11. Kunda, M., McGreggor, K., & Goel, A. (2010). Taking a look (literally!) at the raven’s intelligence test: Two visual solution strategies. In Proceedings of 32nd Annual Meeting of the Cognitive Science Society, Portland.Google Scholar
  12. Kunda, M., McGreggor, K., & Goel, A. (2012). Reasoning on the Raven’s Advanced Progressive Matrices test with iconic visual representations. In 34th Annual Conference of the Cognitive Science Society (pp. 1828–1833).Google Scholar
  13. Kunda, M., McGreggor, K., & Goel, A. (2013). A computational model for solving problems from the raven’s progressive matrices intelligence test using iconic visual representations. Cognitive Systems Research, 22, 47–66.CrossRefGoogle Scholar
  14. Lane, S., & Schooler, J. (2004). Skimming the surface verbal overshadowing of analogical retrieval. Psychological Science, 15(11), 715–719.CrossRefGoogle Scholar
  15. Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning (Vol. 3). Berlin: Springer Science and Business Media.Google Scholar
  16. Marr, D., & Vision, A. (1982). A computational investigation into the human representation and processing of visual information. WH San Francisco: Freeman and Company.Google Scholar
  17. Orzechowski, J., Nęcka, E., & Szymura, B. (2008). Psychologia poznawcza. Wydawnictwo Szkoly Wyższej Psychologii Spolecznej “Academica”.Google Scholar
  18. Preckel, F., & Thiemann, H. (2003). Online-versus paper-pencil version of a high potential intelligence test. Swiss Journal of Psychology/Schweizerische Zeitschrift für Psychologie/Revue Suisse de Psychologie, 62(2), 131.Google Scholar
  19. Rasmussen, D., & Eliasmith, Ch. (2011). A neural model of rule generation in inductive reasoning. Topics in Cognitive Science, 3(1), 140–153.CrossRefGoogle Scholar
  20. Raven, J., Raven, J., & Court, J. (2003a). Manual for Raven’s Progressive Matrices and vocabulary scales (Section 1: General overview). San Antonio, TX: Harcourt Assessment.Google Scholar
  21. Raven, J., Raven, J., & Court, J. (2003b). Manual for Raven’s Progressive Matrices and vocabulary scales (Section 4: Advanced progressive matrices). San Antonio, TX: Harcourt Assessment.Google Scholar
  22. Reitman, W. (1965). Cognition and thought: An information processing approach. New York: John Wiley & Sons, Inc.Google Scholar
  23. Ricco, R., & Overton, W. (2011). Dual systems competence–procedural processing: A relational developmental systems approach to reasoning. Developmental Review, 31(2), 119–150.CrossRefGoogle Scholar
  24. Roberts, M., Meo, M., & Marucci, F. (2007). Element salience as a predictor of item difficulty for Raven’s Progressive Matrices. Intelligence, 35(4), 359–368.CrossRefGoogle Scholar
  25. Schurz, G. (2008). Patterns of abduction. Synthese, 164(2), 201–234.CrossRefGoogle Scholar
  26. Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181–201.CrossRefGoogle Scholar
  27. Stanovich, K. (1999). Who is rational? Studies of individual differences in reasoning. Park Drive: Psychology Press.Google Scholar
  28. Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge: MIT Press.Google Scholar
  29. Thagard, P. (2000). How scientists explain disease. Princeton: Princeton University Press.Google Scholar
  30. Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science, 22(1), 1–24.CrossRefGoogle Scholar
  31. Urbański, M. (2009). Rozumowania abdukcyjne. Modele i procedury. Adam Mickiewicz University Press, Poznań.Google Scholar
  32. Urbański, M., Paluszkiewicz, K. & Urbańska, J. (2013). Deductive reasoning and learning: A cross-curricular study. Research report. Institute of Psychology, Adam Mickiewicz University.Google Scholar
  33. Urbański, M. & Żyluk, N. (2016). Sets of situations, topics, and question relevance. Research report. Institute of Psychology, Adam Mickiewicz University.Google Scholar
  34. Urbański, M., Żyluk, N., Paluszkiewicz, K., Urbańska, J. (2016). A formal model of erotetic reasoning in solving somewhat ill-defined problems. In D. Mohammed & M. Lewiński (Eds.), Argumentation and Reasoned Action. Proceedings of the 1st European Conference on Argumentation. London: College Publications (in print).Google Scholar
  35.  Verguts, T., & De Boeck, P. (2002). The induction of solution rules in Raven’s Progressive Matrices test. European Journal of Cognitive Psychology, 14(4), 521–547.CrossRefGoogle Scholar
  36. Vigneau, F., & Bors, D. (2008). The quest for item types based on information processing: An analysis of Raven’s Advanced Progressive Matrices, with a consideration of gender differences. Intelligence, 36(6), 702–710.CrossRefGoogle Scholar
  37. Wiley, J., Loesche, P., & Hasselhorn, M. (2015). How knowing the rules affects solving the Raven Advanced Progressive Matrices test. Intelligence, 48, 58–75.CrossRefGoogle Scholar
  38. Williams, J., & McCord, D. (2006). Equivalence of standard and computerized versions of the Raven Progressive Matrices test. Computers in Human Behavior, 22(5), 791–800.CrossRefGoogle Scholar
  39. Wiśniewski, A. (2013). Questions, inferences, and scenarios. London: College Publications.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Małgorzata Kisielewska
    • 1
  • Mariusz Urbański
    • 1
  • Katarzyna Paluszkiewicz
    • 1
  1. 1.Institute of PsychologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations