Defining Peirce’s Reasoning Processes Against the Background of the Mathematical Reasoning of Computability Theory

  • Antonino Drago
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 27)


In the present paper Peirce’s inferential processes are accurately defined against the background of the four ways of reasoning in Computability theory, i.e. general recursion, unbounded minimalization, oracle and undecidabilities. It is shown that Peirce anticipated almost all them.


Intuitionist Logic Computability Theory Inference Process Final Element Inferential Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I acknowledge Prof. David Braithwaite who corrected my poor English.


  1. Achinstein, P. (1987). Scientific discovery and Maxwell’s kinetic theory. Philosophy of Science, 54(3), 409–434.CrossRefGoogle Scholar
  2. Beth, W. E. (1959). Foundations of mathematics. Amsterdam: North-Holland.Google Scholar
  3. Bishop, E. (1967). Foundations of constructive analysis. New York: Mc Graw-Hill.Google Scholar
  4. Burch, R. (2012). Charles Saunders Peirce. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy.
  5. Cellucci, C. (1998). The scope of logic: Deduction, abduction, analogy. Theoria, 64, 217–241.CrossRefGoogle Scholar
  6. Chiasson, P. (2001). Abduction as an aspect of retroduction. Digital Encyclopedy of Charles S, Peirce.
  7. Dauben, J. W. (1977). C.S. Peirce’s philosophy of inifnite sets. Mathematics Magazine, 50, 125–135.CrossRefGoogle Scholar
  8. Davis, W. H. (1972). Peirce’s epistemology. The Hague: Martinus Nijhoff.Google Scholar
  9. Davis, M., et al. (1994). Computability, complexity and languages, fundamental of theoretical computer science. New York: Academic Press.Google Scholar
  10. Douven, J. (2011). Abduction. In: E. N. Zalta (Ed.), Stanford encyclopedia of philosophy.
  11. Drago, A. (1990). I quattro modelli della realtà fisica. Epistemologia, 13(1990), 303–324.Google Scholar
  12. Drago, A. (1997). New Interpretation of Cavalieri’s and Torricelli’s method of indivisibles. In J. Folta (Ed.), Science and technology of Rudolfinian time (pp. 150–167). Praha: Nat. Technical Museum.Google Scholar
  13. Drago, A. (2003). The introduction of actual infinity in modern science: mathematics and physics in both Cavalieri and Torricelli, Ganita Bharati. Bulletin Society Mathematical India, 25, 79–98.Google Scholar
  14. Drago, A. (2012). Pluralism in logic: The square of opposition, Leibniz’ principle of sufficient reason and Markov’s principle. In J.-Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 175–189). Basel: Birkhaueser.CrossRefGoogle Scholar
  15. Drago, A. (2013). A logical model of Peirce’s abduction as suggested by various theories concerning unknown entities. In L. Magnani (Ed.), Model-based reasoning in science and technology. Theoretical and cognitive issues (pp. 315–338). Berlin: Springer.Google Scholar
  16. Drago, A. (2015). Il chimico-filosofo Charles S. Peirce sulla tabella di Mendeleieff e sui tipi di inferenza per costrurla. In M. Taddia (Ed.), Atti XVI Conference of GNSFC 2015 (in press).Google Scholar
  17. Drago, A. (2016). The four prime principles of theoretical physics and their roles in the history. Atti Fondazione Ronchi, 70(6), 657–667.Google Scholar
  18. Drago, A. (2016). I quattro principi primi della fisica teorica. In L. Fregonese (Ed.), Atti Sisfa 2011 (in press).Google Scholar
  19. Dummett, M. (1977). Principles of intuitionism. Oxford: Clarendon Press.Google Scholar
  20. Eisele, C. (1985). Historical perspectives on Peirce’s logic of science: A history of science. Amsterdam: Mouton.Google Scholar
  21. Fann, K. T. (1970). Peirce’s theory of abduction. The Hague: Nijhoff.CrossRefGoogle Scholar
  22. Feferman, S. (1998). In the light of logic (pp. 77–93). Oxford: Oxford U.P.Google Scholar
  23. Fisch, M. H. (1972). Peirce and Leibniz. Journal History of Ideas, 33, 485–496.CrossRefGoogle Scholar
  24. Flach, P. A., & Kakas, A. (2000). Abductive and inductive reasoning: Background and issues. In P. A Flach & A. Kakas (Eds.), Induction and abduction. Essays on their relations and integration (1–27). Boston: Kluwer Academic Press.Google Scholar
  25. Gardiès, J.-L. (1991). Le raisonnement par l’absurde. Paris: PUF.Google Scholar
  26. Grzegorczyk, A. (1964). Philosophical plausible formal interpretation of intuitionist logic. Indagationes Mathematicae, 26, 596–601.CrossRefGoogle Scholar
  27. Hanson, R. N. (1958). Pattern of discovery. Cambridge: Cambridge U.P.Google Scholar
  28. Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8(10), 437–479.CrossRefGoogle Scholar
  29. Hilpinen, R. (2004). Peirce’s Logic. In D. M. Gabbay & J. Woods (Eds.), Handbook of history of logic (Vol. 3, pp. 611–658). New York: Elsevier.Google Scholar
  30. Hintikka, J. (1998). “What is abduction? The fundamental problem of contemporary epistemology. Transactions of the Charles S. Peirce Society, 34, 503–533.Google Scholar
  31. Hoffmann, M. H. G. (2010). “Theoretic Transformations” and a new classification of abductive inference. Transactions of the Charles S Peirce Society, 46(4), 570–590.CrossRefGoogle Scholar
  32. Horn, L. (2001). The logic of logical double negation. In Proceedings Sophia Symposium on Negation, Tokyo, University of Sophia, pp. 79–112.Google Scholar
  33. Horn, L. (2008). On the contrary. In Proceedings Conference Logic Now and Then. Brussels (in press).Google Scholar
  34. Josephson, J. R., & Josephson, S. G. (1994). Abductive inference: Computation, philosophy and technology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Kakas, A. C., & Mancarella, P. (1990). Generalized stable models: A semantics for abduction. In Proceedings E-CAI-90, pp. 385–391.Google Scholar
  36. Klein, M. J. (1982). Some turns of phrase in Einstein’s early papers. In A. Shimony (Ed.), Physics as natural philosophy (pp. 364–373). Cambridge, MA.: MIT Press.Google Scholar
  37. Lavoisier, A.-L. (1862–92). Oeuvres de Lavoisier, Paris, t. 1.Google Scholar
  38. Magnani, L. (2001). Abduction, reason, and science. Process of discovery and explanation. Dordrecht: Kluwer Academic Press.Google Scholar
  39. McKaughan, J. (2008). From Ugly Duckling to Swan: C.S. Peirce, Abduction, and the Pursuit of Scientific Theories. Transactions of the Charles S. Peirce Society, 44, 446–468.Google Scholar
  40. McMullin, E. (1992). The inference that makes science. Milwaukee: Marquette University Press.Google Scholar
  41. Nickles, T. (Ed.). (1980). Scientific discovery, logic and rationality. Boston: Reidel.Google Scholar
  42. Niiniluoto, I. (1999). Defending abduction. Philosophy of Science, 66, 346–351.CrossRefGoogle Scholar
  43. Peirce, C. S. (1965). Collected papers of Charles Sanders Peirce. In C. Hartshorne & P. Weiss (Eds.), Harvard University: Cambridge, Massachusetts.Google Scholar
  44. Peirce, C. S. (1984). Some consequences of four incapacities (orig. 1868). In Writings of Charles Spencer Peirce (Vol. 2, pp. 211–242). Bloomington: Indiana University Press.Google Scholar
  45. Peirce, C. S. (1968). Questions concerning certain claimed human faculties. Journal of Speculative Philosophy, 2, 103–114; (1868). Some consequences of four incapacities. Journal of Speculative Philosophy, 2, 140–157; (1869). Grounds of validity of the laws of logic: Further consequences of four incapacities. Journal of Speculative Philosophy, 2, 193–208. All collected in (Peirce 1984, Vol. 2) C. S. Peirce (1931): Collected paper by Charles S. Peirce (Vol. 1–8). Cambridge MA: Harvard (1931–1958).Google Scholar
  46. Prawitz, D., & Melmnaas, P.-E. (1968). A survey of some connections between classical intuitionistic and minimal logic. In H. A. Schmidt, K. Schütte, & H.-J. Thiele (Eds.), Contributions to mathematical logic (pp. 215–229). Amsterdam: North-Holland.Google Scholar
  47. Schurz, G. (2008). Patterrn of abduction. Synthese, 164(2), 201–234.CrossRefGoogle Scholar
  48. Stalker, D. (Ed.). (1990). Grue, the new riddle of induction. Open Court, Chicago and La Salle, 1994.Google Scholar
  49. van Brakel, J. (2000). Philosophy of Chemistry. Leuven: Leuven University Press.Google Scholar
  50. Webb, J. (1980). Mechanism, mentalism and metamathematics. Dordrecht: Reidel.CrossRefGoogle Scholar
  51. Weyl, H. (1987). The continuum: A critical examination of the foundation of analysis (orig. 1918). Kirksville MO.: T. Jefferson University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze fisicheUniversità di Napoli “Federico II”PisaItaly

Personalised recommendations