Exploring Drivers of Urban Expansion

  • Anna ShchiptsovaEmail author
  • Richard Hewitt
  • Elena Rovenskaya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 453)


Spatial patterns in urban land development are linked with the level and type of economic activity. Here, we develop a statistical model to explore the relationship between the spatially explicit population density and the type of land use in a region. The relationship between the type of land use (urban/non-urban) and the level of economic activity is modeled at the scale of a single cell on the geographical map. Thus, the statistical model should be tested against large samples of data points on the high-resolution maps. The challenge here is that the original socio-economic data is given at a coarser resolution than the land use (200\(\,\times \,\)200 m cells) We present results of our spatial modeling exercise for the case study of the Seville Province, Spain.


Land use model Urban sprawl Multiple regression 



The authors would like to acknowledge DG research for funding through the FP7-funded COMPLEX project #308601,


  1. 1.
    United Nations Population Division: World Population Prospects: The 2004 Revision and World Urbanization Prospects: The 2005 Revision. United Nations, New York (2005)Google Scholar
  2. 2.
    Angel, S., Sheppard, S.C., Civco, D.L.: The Dynamics of Global Urban Expansion. Transport and Urban Development Department, The World Bank, Washington, DC (2005)Google Scholar
  3. 3.
    Frenkel, A., Ashkenazi, M.: Measuring urban sprawl: how can we deal with it? Environ. Plann. B Plann. Des. 35(1), 56–79 (2008)CrossRefGoogle Scholar
  4. 4.
    Clarke, K.C., Hoppen, S., Gaydos, L.J.: A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environ. Plann. B Plann. Des. 24, 247–261 (1997)CrossRefGoogle Scholar
  5. 5.
    Batty, M., Xie, Y., Sun, Z.: Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban Syst. 23, 205–233 (1999)CrossRefGoogle Scholar
  6. 6.
    Lopez, E., Bocco, G., Mendoza, M., Duhau, E.: Predicting land-cover and land-use change in the urban fringe: a case in Morelia City Mexico. Landscape Urban Plann. 55, 271–285 (2001)CrossRefGoogle Scholar
  7. 7.
    Cheng, J., Masser, I.: Urban growth pattern modeling: a case study of Wuhan City PR China. Landscape Urban Plann. 6, 199–217 (2003)CrossRefGoogle Scholar
  8. 8.
    Huang, B., Zhang, L., Wu, B.: Spatiotemporal analysis of rural-urban land conversion. Int. J. Geograph. Inf. Sci. 23(3), 379–398 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    LeSage, J., Pace,R.K.: Introduction to Spatial Econometrics. CRC Press (2009)Google Scholar
  11. 11.
    Overmars, K.P., de Koning, G.H.J., Veldkamp, A.: Spatial autocorrelation in multi-scale land use models. Ecol. Modell. 164, 257–270 (2003)CrossRefGoogle Scholar
  12. 12.
    Landis, G.D.: Imagining land use futures: applying the California urban futures model. J. Am. Plann. Assoc. 61(4), 438–457 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna Shchiptsova
    • 1
    Email author
  • Richard Hewitt
    • 2
  • Elena Rovenskaya
    • 1
    • 3
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Observatorio para una Cultura del TerritorioMadridSpain
  3. 3.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations