An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9685)

Abstract

We evaluate the performance of fast approximation algorithms for MAX SAT on the comprehensive benchmark sets from the SAT and MAX SAT contests. Our examination of a broad range of algorithmic techniques reveals that greedy algorithms offer particularly striking performance, delivering very good solutions at low computational cost. Interestingly, their relative ranking does not follow their worst case behavior. Johnson’s deterministic algorithm is constantly better than the randomized greedy algorithm of Poloczek et al. [31], but in turn is outperformed by the derandomization of the latter: this 2-pass algorithm satisfies more than \(99\,\%\) of the clauses for instances stemming from industrial applications. In general it performs considerably better than non-oblivious local search, Tabu Search, WalkSat, and several state-of-the-art complete and incomplete solvers, while being much faster. But the 2-pass algorithm does not achieve the excellent performance of Spears’ computationally intense simulated annealing. Therefore, we propose a new hybrid algorithm that combines the strengths of greedy algorithms and stochastic local search to provide outstanding solutions at high speed: in our experiments its performance is as good as simulated annealing, achieving an average loss with respect to the best known value of less that \(0.5\,\%\), while its speed is comparable to the greedy algorithms.

Notes

Acknowledgments

The authors would like to thank Allan Borodin for his valuable comments, and Benjamin Kaufmann and Ruben Martins for their help with optimizing the parameters of their solvers for our setting.

The first author was supported by the Alexander von Humboldt Foundation within the Feodor Lynen program, and by NSF grant CCF-1115256, and AFOSR grants FA9550-15-1-0038 and FA9550-12-1-0200. The second author was supported by NSF grant CCF-1115256.

References

  1. 1.
    Abrame, A., Habet, D.: Ahmaxsat: Description and evaluation of a branch and bound Max-SAT solver. J. Satisfiability, Boolean Model. Comput. 9, 89–128 (2015). www.lsis.org/habetd/Djamal_Habet/MaxSAT.html. Accessed on 02 Feb 2016MathSciNetGoogle Scholar
  2. 2.
    Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: ICLP 2012, pp. 211–221 (2012)Google Scholar
  3. 3.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT evaluation. www.maxsat.udl.cat/14/. Accessed on 12 Jan 2016
  4. 4.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2015: Tenth Max-SAT evaluation. www.maxsat.udl.cat/15/. Accessed on 02 Feb 2016
  5. 5.
    Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proc. of SAT COMPETITION 2014: Solver and Benchmark Descriptions (2014). http://satcompetition.org/edacc/sc14/. Accessed on 28 Jan 2016
  6. 6.
    Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT. In: AAAI, pp. 2623–2629 (2014). the code is available at http://lcs.ios.ac.cn/caisw/MaxSAT.html. Accessed on 25 Jan 2016
  7. 7.
    Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some classic approximation algorithms. In: SODA, pp. 647–655 (2011)Google Scholar
  9. 9.
    Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 368–383. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer set programming. In: ICLP, pp. 1–10 (2011)Google Scholar
  11. 11.
    Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: A survey. In: Satisfiability Problem: Theory and Applications, pp. 19–152 (1996)Google Scholar
  12. 12.
    Heule, M., Weaver, S. (eds.): SAT 2015. LNCS, vol. 9340. Springer, Heidelberg (2015)MATHGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)MathSciNetMATHGoogle Scholar
  15. 15.
    Kaufmann, B.: Personal communicationGoogle Scholar
  16. 16.
    Kaufmann, B.: Clasp: A conflict-driven nogood learning answer set solver (version 3.1.3). http://www.cs.uni-potsdam.de/clasp/. Accessed on 28 Jan 2016
  17. 17.
    Kautz, H.: Walksat (version 51). www.cs.rochester.edu/u/kautz/walksat/, see the source code for further references. Accessed on 27 Jan 2016
  18. 18.
    Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Martins, R.: Personal communicationGoogle Scholar
  20. 20.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: An open source version of the MaxSAT solver WBO (version 1.3.0). http://sat.inesc-id.pt/open-wbo/index.html. Accessed on 25 Jan 2016
  22. 22.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Mastrolilli, M., Gambardella, L.M.: MAX-2-SAT: How good is Tabu Search in the worst-case? In: AAAI, pp. 173–178 (2004)Google Scholar
  24. 24.
    Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial optimization problems. In: CODAS, pp. 477–483 (1996)Google Scholar
  25. 25.
    Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Narodytska, N., Bacchus, F.: EvaSolver. https://www.cse.unsw.edu.au/ninan/. Accessed on 04 Jan 2016
  27. 27.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI 2014, pp. 2717–2723 (2014)Google Scholar
  28. 28.
    Pankratov, D., Borodin, A.: On the relative merits of simple local search methods for the MAX-SAT problem. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 223–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: SODA, pp. 656–663 (2011)Google Scholar
  31. 31.
    Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: Simple algorithms and inapproximability bounds, In SubmissionGoogle Scholar
  32. 32.
    Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 598–609. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  33. 33.
    Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 521–532 (1993)Google Scholar
  34. 34.
    Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 533–558 (1993)Google Scholar
  35. 35.
    Spielman, D.A., Teng, S.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)CrossRefGoogle Scholar
  36. 36.
    Williamson, D.P.: Lecture notes in approximation algorithms, Fall 1998. IBM Research Report RC 21409, IBM Research (1999)Google Scholar
  37. 37.
    Zhang, Y., Zha, H., Chu, C.H., Ji, X.: Protein interaction interference as a Max-Sat problem. In: Proceedings of the IEEE CVPR 2005 Workshop on Computer Vision Methods for Bioinformatics (2005)Google Scholar
  38. 38.
    van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 188–197. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Operations Research and Information EngineeringCornell UniversityIthacaUSA

Personalised recommendations