Advertisement

On the Solution of Circulant Weighing Matrices Problems Using Algorithm Portfolios on Multi-core Processors

  • Ilias S. Kotsireas
  • Panos M. Pardalos
  • Konstantinos E. Parsopoulos
  • Dimitris Souravlias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9685)

Abstract

Research on the existence of specific classes of combinatorial matrices such as the Circulant Weighing Matrices (CWMs) lies in the core of diverse theoretical and computational efforts. Modern metaheuristics have proved to be valuable tools for solving such problems. Recently, parallel Algorithm Portfolios (APs) composed of established search algorithms and sophisticated resource allocation procedures offered significant improvements in terms of time efficiency and solution quality. The present work aims at shedding further light on the latent quality of parallel APs on solving CWM problems. For this purpose, new AP configurations are considered along with specialized procedures that can enhance their performance. Experimental evaluation is conducted on a computationally restrictive, yet widely accessible, multi-core processor computational environment. Statistical analysis is used to reveal performance trends and extract useful conclusions.

Keywords

Algorithm Portfolios Circulant Weighing Matrices Computational optimization Multi-core processors 

Notes

Acknowledgements

Research is partially supported by the Paul and Heidi Brown Preeminent Professorship in Industrial & Systems Engineering, University of Florida.

References

  1. 1.
    Ang, M., Arasu, K., Ma, S., Strassler, Y.: Study of proper circulant weighing matrices with weigh 9. Discrete Math. 308, 2802–2809 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arasu, K., Dillon, J., Jungnickel, D., Pott, A.: The solution of the waterloo problem. J. Comb. Theor. Ser. A 71, 316–331 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arasu, K., Gulliver, T.: Self-dual codes over fp and weighing matrices. IEEE Trans. Inf. Theor. 47(5), 2051–2055 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arasu, K., Gutman, A.: Circulant weighing matrices. Cryptogr. Commun. 2, 155–171 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arasu, K., Leung, K., Ma, S., Nabavi, A., Ray-Chaudhuri, D.: Determination of all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl. 12, 498–538 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chiarandini, M., Kotsireas, I., Koukouvinos, C., Paquete, L.: Heuristic algorithms for hadamard matrices with two circulant cores. Theoret. Comput. Sci. 407(1–3), 274–277 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cousineau, J., Kotsireas, I., Koukouvinos, C.: Genetic algorithms for orthogonal designs. Australas. J. Comb. 35, 263–272 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    van Dam, W.: Quantum algorithms for weighing matrices and quadratic residues. Algorithmica 34, 413–428 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eades, P.: On the existence of orthogonal designs. Ph.D. thesis, Australian National University, Canberra (1997)Google Scholar
  10. 10.
    Eades, P., Hain, R.: On circulant weighing matrices. Ars Comb. 2, 265–284 (1976)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gendreau, M., Potvin, J.Y.: Tabu search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 41–59. Springer, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Geramita, A., Sebery, J.: Orthogonical Designs: Quadratic Forms and Hadamard Matrices. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1979)Google Scholar
  13. 13.
    Glover, F.: Tabu search - part I. ORSA J. Comput. 1, 190–206 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Glover, F.: Tabu search - part II. ORSA J. Comput. 2, 4–32 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gomes, C.P., Selman, B.: Algorithm portfolio design: theory vs. practice. In: Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 190–197 (1997)Google Scholar
  17. 17.
    Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 27, 51–53 (1997)CrossRefGoogle Scholar
  18. 18.
    Kotsireas, I.S., Parsopoulos, K.E., Piperagkas, G.S., Vrahatis, M.N.: Ant-based approaches for solving autocorrelation problems. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 220–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Kotsireas, I.: Algorithms and metaheuristics for combinatorial matrices. In: Pardalos, P., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 283–309. Springer, New York (2013)CrossRefGoogle Scholar
  20. 20.
    Kotsireas, I., Koukouvinos, C., Pardalos, P., Shylo, O.: Periodic complementary binary sequences and combinatorial optimization algorithms. J. Comb. Optim. 20(1), 63–75 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kotsireas, I., Koukouvinos, C., Pardalos, P., Simos, D.: Competent genetic algorithms for weighing matrices. J. Comb. Optim. 24(4), 508–525 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kotsireas, I.S., Parsopoulos, K.E., Piperagkas, G.S., Vrahatis, M.N.: Ant-based approaches for solving autocorrelation problems. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 220–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Koukouvinos, C., Seberry, J.: Weighing matrices and their applications. J. Stat. Plan. Infer. 62(1), 91–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 363–397. Springer, New York (2010)CrossRefGoogle Scholar
  25. 25.
    Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical optimization. IEEE Trans. Evol. Comp. 14(5), 782–800 (2010)CrossRefGoogle Scholar
  26. 26.
    Pham, D., Karaboga, D.: Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer, London (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with market trading-based time allocation. In: Proceedings International Conference on Operations Research 2014 (OR 2014) (2014)Google Scholar
  28. 28.
    Souravlias, D., Parsopoulos, K.E., Kotsireas, I.S.: Circulant weighing matrices: a demanding challenge for parallel optimization metaheuristics. Optim. Lett. (2015)Google Scholar
  29. 29.
    Strassler, Y.: The classification of circulant weighing matrices of weight 9. Ph.D. thesis, Bar-Ilan University (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ilias S. Kotsireas
    • 1
  • Panos M. Pardalos
    • 2
  • Konstantinos E. Parsopoulos
    • 3
  • Dimitris Souravlias
    • 3
  1. 1.Department of Physics and Computer ScienceWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations