Advertisement

The Origin of Insight in Mathematics

  • Reuben HershEmail author
  • Vera John-Steiner
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

This paper has four objectives: (1) to address some psychological sources that motivate creative mathematicians to do sustained research, (2) to use case studies and self-reports to identify cognitive and mathematical strategies, (3) to give inspiring examples of creative breakthroughs in the teaching of mathematics, (4) to report on a startling recent discovery in artificial intelligence, with thought-provoking implications for the management of human intelligence: the pursuit of novelty, unrestricted by any other prescribed goal or objective, radically speeds up evolutionary adaptation.

Keywords

Creativity Mathematics Clarence Stephens Potsdam model Moore method 

References

  1. Courant, R., & Robbins, H. (1979). What is mathematics? New York: Oxford University Press.Google Scholar
  2. Csikszentmihalyi, M. (2009). Creativity. New York: HarperCollins.Google Scholar
  3. Feldman, D., & Goldsmith, L. (1986). Nature’s gambit. New York: Basic Books.Google Scholar
  4. Gardner, H. (1993). Creating minds. New York: Basic Books.Google Scholar
  5. Getzels, J. W., & Jackson, P. W. (1962). Creativity and intelligence: Explorations with gifted students. London: Wiley.Google Scholar
  6. Grosholz, E. R., (2011), Philosophy of mathematics and philosophy of history. Paradigmi. Rivista di critica filosofica, n. 3Google Scholar
  7. Gustin, W. C. (1985). The development of exceptional research mathematicians. In B. S. Bloom (Ed.), Developing talent in young people. New York: Ballantine Books.Google Scholar
  8. Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover Publications.Google Scholar
  9. Halsted, G. B. (1955). Translator’s introduction to J Bolyai’s ‘The Science of Absolute Space’. In R. Bonola (Ed.), Non-Euclidean geometry (pp. iii–xxx). New York: Dover Publications.Google Scholar
  10. Hasse, C. (2002). Gender diversity in play with physics. The problem of premises for participation in activities. Mind, Culture, and Activity, 9(4), 250–270.CrossRefGoogle Scholar
  11. Hersh, R., & Griego, R. J. (1969). Brownian motion and potential theory. Scientific American, 220(3), 66–74.CrossRefGoogle Scholar
  12. Hersh, R., & John-Steiner, V. (2011). Loving and hating mathematics: Challenging the myths of mathematical life. Princeton: Oxford University Press.Google Scholar
  13. John-Steiner, V. (1997). Notebooks of the mind (2nd ed.). New York: Oxford University Press.Google Scholar
  14. Koestler, A. (1964). The act of creation. New York: Macmillan.Google Scholar
  15. Lefschetz, S. (1924). L’Analysis situs et la géométrie algébrique. Paris: Gauthier-Villars.Google Scholar
  16. Meschkowski, H. (1964). Noneuclidean geometry (p. 52). New York: Academic.Google Scholar
  17. Noddings, N. (1993). Excellence as a guide to educational conversation. Teachers College Record, 94(4), 8–9.Google Scholar
  18. Olson, S. (2004). Count down. Boston: Houghton Mifflin.Google Scholar
  19. Schilpp, P. A. (1970). Albert Einstein: Philosopher-Scientist (3rd ed.). La Salle: Open Court.Google Scholar
  20. Stanley, K., & Lehman, J. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation Journal, 19(2), 189–223.CrossRefGoogle Scholar
  21. Stanley, K., & Lehman, J. (2015). Why greatness cannot be planned: The myth of the objective. New York: Springer.CrossRefGoogle Scholar
  22. Wigner, E. (1992). The recollections of Eugene P. Wigner. New York: Plenum.Google Scholar
  23. Winner, E. (1996). Gifted children. New York: Basic Books.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of New MexicoAlbuquerqueUSA

Personalised recommendations