Advertisement

Gibbs/MCMC Sampling for Multiple RNA Interaction with Sub-optimal Solutions

  • Saad MneimnehEmail author
  • Syed Ali Ahmed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9702)

Abstract

The interaction of two RNA molecules involves a complex interplay between folding and binding that warranted the development of RNA-RNA interaction algorithms. However, these algorithms do not handle more than two RNAs. We note our recent successful formulation for the multiple (more than two) RNA interaction problem based on a combinatorial optimization called Pegs and Rubber Bands. Even then, however, the optimal solution obtained does not necessarily correspond to the actual biological structure. Moreover, a structure produced by interacting RNAs may not be unique to start with. Multiple solutions (thus sub-optimal ones) are needed. Here, a sampling approach that extends our previous formulation for multiple RNA interaction is developed. By clustering the sampled solutions, we are able to reveal representatives that correspond to realistic structures. Specifically, our results on the U2-U6 complex and its introns in the spliceosome of yeast, and the CopA-CopT complex in E. Coli are consistent with published biological structures.

Keywords

Multiple RNA interaction RNA structure Gibbs sampling Metropolis-Hastings algorithm Clustering 

References

  1. 1.
    Ahmed, S.A., Mneimneh, S.: Multiple RNA interaction with sub-optimal solutions. In: Basu, M., Pan, Y., Wang, J. (eds.) ISBRA 2014. LNCS, vol. 8492, pp. 149–162. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Ahmed, S.A., Mneimneh, S., Greenbaum, N.L.: A combinatorial approach for multiple RNA interaction: formulations, approximations, and heuristics. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 421–433. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. J. Comput. Biol. 13(2), 267–282 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345(5), 987–1001 (2005)CrossRefGoogle Scholar
  5. 5.
    Cao, S., Chen, S.J.: Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes. J. Mol. Biol. 357(1), 292–312 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, H.L., Condon, A., Jabbari, H.: An \(o(n^5)\) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. J. Comput. Biol. 16(6), 803–815 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25(12), i365–i373 (2009)CrossRefGoogle Scholar
  9. 9.
    Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24), 7280–7301 (2003)CrossRefGoogle Scholar
  10. 10.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49(1), 65–88 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998). Chap. 11CrossRefGoogle Scholar
  12. 12.
    Gallager, R.G.: Discrete Stochastic Processes, vol. 321. Springer Science & Business Media, Newyork (2012). Chap. 4zbMATHGoogle Scholar
  13. 13.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)CrossRefGoogle Scholar
  14. 14.
    Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huang, F.W., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25(20), 2646–2654 (2009)CrossRefGoogle Scholar
  16. 16.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)Google Scholar
  17. 17.
    Kolb, F.A., Engdahl, H.M., Slagter-Jäger, J.G., Ehresmann, B., Ehresmann, C., Westhof, E., Wagner, E.G.H., Romby, P.: Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19(21), 5905–5915 (2000)CrossRefGoogle Scholar
  18. 18.
    Kolb, F.A., Malmgren, C., Westhof, E., Ehresmann, C., Ehresmann, B., Wagner, E., Romby, P.: An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA 6(3), 311–324 (2000)CrossRefGoogle Scholar
  19. 19.
    Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics 27(4), 456–463 (2011)CrossRefGoogle Scholar
  20. 20.
    Liu, J.S.: The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem. J. Am. Stat. Assoc. 89(427), 958–966 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6–7), 1105–1119 (1990)CrossRefGoogle Scholar
  22. 22.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  23. 23.
    Metzler, D., Nebel, M.E.: Predicting RNA secondary structures with pseudoknots by MCMC sampling. J. Math. Biol. 56(1–2), 161–181 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Meyer, I.M.: Predicting novel RNA-RNA interactions. Curr. Opin. Struct. Biol. 18(3), 387–393 (2008)CrossRefGoogle Scholar
  25. 25.
    Mneimneh, S.: On the approximation of optimal structures for RNA-RNA interaction. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 6(4), 682–688 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mneimneh, S., Ahmed, S.A.: Multiple RNA interaction: beyond two. To appear in IEEE Trans. Nanobiosci. (2015)Google Scholar
  27. 27.
    Mneimneh, S., Ahmed, S.A.: A sampling approach for multiple RNA interaction: finding sub-optimal solutions fast. In: BIOINFORMATICS 2015 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, Rome, Italy, 21–23 February 2015Google Scholar
  28. 28.
    Mneimneh, S., Ahmed, S.A., Greenbaum, N.L.: Multiple RNA interaction - formulations, approximations, and heuristics. In: BIOINFORMATICS 2013 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, Barcelona, Spain, 11–14 February 2013, pp. 242–249 (2013)Google Scholar
  29. 29.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)CrossRefGoogle Scholar
  30. 30.
    Newby, M.I., Greenbaum, N.L.: A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 7(6), 833–845 (2001)CrossRefGoogle Scholar
  31. 31.
    Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. Ser. 15(2), 92 (2004)MathSciNetGoogle Scholar
  32. 32.
    Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. Algorithms Mol. Biol. 5(5) (2010)Google Scholar
  33. 33.
    Sashital, D.G., Cornilescu, G., Butcher, S.E.: U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat. Struct. Mol. Biol. 11(12), 1237–1242 (2004)CrossRefGoogle Scholar
  34. 34.
    Sun, J.S., Manley, J.L.: A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9(7), 843–854 (1995)CrossRefGoogle Scholar
  35. 35.
    Tong, W., Goebel, R., Liu, T., Lin, G.: Approximation algorithms for the maximum multiple RNA interaction problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 49–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Tong, W., Goebel, R., Liu, T., Lin, G.: Approximating the maximum multiple RNA interaction problem. Theoret. Comput. Sci. 556, 63–70 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wei, D., Alpert, L.V., Lawrence, C.E.: Rnag: a new gibbs sampler for predicting RNA secondary structure for unaligned sequences. Bioinformatics 27(18), 2486–2493 (2011)CrossRefGoogle Scholar
  38. 38.
    Zhao, C., Bachu, R., Popović, M., Devany, M., Brenowitz, M., Schlatterer, J.C., Greenbaum, N.L.: Conformational heterogeneity of the protein-free human spliceosomal U2–U6 snRNA complex. RNA 19(4), 561–573 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Hunter College and The Graduate Center City University of New YorkNew YorkUSA

Personalised recommendations