AlCoB 2016 2016: Algorithms for Computational Biology pp 53-64

# Counting, Generating and Sampling Tree Alignments

• Cedric Chauve
• Julien Courtiel
• Yann Ponty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9702)

## Abstract

Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis. In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by means of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.

## Keywords

Tree alignment RNA secondary structure Dynamic programming

## References

1. 1.
Andrade, H., Area, I., Nieto, J.J., Torres, A.: The number of reduced alignments between two dna sequences. BMC Bioinformatics 15, 94 (2014). http://dx.doi.org/10.1186/1471-2105-15-94
2. 2.
Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignments of RNA structures. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(2), 309–322 (2010). http://doi.acm.org/10.1145/1791396.1791409
3. 3.
Chauve, C., Courtiel, J., Ponty, Y.: Counting, generating and sampling tree alignments. In: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016. Trujillo, Spain, Jun 2016. https://hal.inria.fr/hal-01154030
4. 4.
Do, C.B., Gross, S.S., Batzoglou, S.: CONTRAlign: discriminative training for protein sequence alignment. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 160–174. Springer, Heidelberg (2006)
5. 5.
Dress, A., Morgenstern, B., Stoye, J.: The number of standard and of effective multiple alignments. Appl. Math. Lett. 11(4), 43–49 (1998). http://www.sciencedirect.com/science/article/pii/S0893965998000548
6. 6.
Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)
7. 7.
Herrbach, C., Denise, A., Dulucq, S.: Average complexity of the Jiang-Wang-Zhang pairwise tree alignment algorithm and of a RNA secondary structure alignment algorithm. Theor. Comput. Sci. 411(26–28), 2423–2432 (2010). http://dx.doi.org/10.1016/j.tcs.2010.01.014
8. 8.
Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. Proc. Ieee Comput. Soc. Bioinform Conf. 2, 159–168 (2003)Google Scholar
9. 9.
Höchsmann, M., Voss, B., Giegerich, R.: Pure multiple rna secondary structure alignments: a progressive profile approach. IEEE/ACM Trans. Comput. Biol. Bioinformatics 1(1), 53–62 (2004). http://dx.doi.org/10.1109/TCBB.2004.11
10. 10.
Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theor. Comput. Sci. 143(1), 137–148 (1995). http://dx.doi.org/10.1016/0304-3975(95)80029-9
11. 11.
Ponty, Y., Saule, C.: A combinatorial framework for designing (pseudoknotted) RNA algorithms. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 250–269. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-23038-7_22
12. 12.
Schirmer, S., Giegerich, R.: Forest alignment with affine gaps and anchors, applied in RNA structure comparison. Theor. Comput. Sci. 483, 51–67 (2013). http://dx.doi.org/10.1016/j.tcs.2012.07.040
13. 13.
Torres, A., Cabada, A., Nieto, J.J.: An exact formula for the number of alignments between two DNA sequences. DNA Seq. 14(6), 427–430 (2003)
14. 14.
Vingron, M., Argos, P.: Determination of reliable regions in protein sequence alignments. Protein Eng. 3(7), 565–569 (1990). http://peds.oxfordjournals.org/content/3/7/565.abstract
15. 15.
Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences, and Genomes. CRC Press, Pevzner (1995)
16. 16.
Wilf, H.S.: A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Adv. Math. 24, 281–291 (1977)