Robustness of the Parsimonious Reconciliation Method in Cophylogeny

  • Laura Urbini
  • Blerina SinaimeriEmail author
  • Catherine Matias
  • Marie-France Sagot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9702)


The aim of this paper is to explore the robustness of the parsimonious host-symbiont tree reconciliation method under editing or small perturbations of the input. The editing involves making different choices of unique symbiont mapping to a host in the case where multiple associations exist. This is made necessary by the fact that no tree reconciliation method is currently able to handle such associations. The analysis performed could however also address the problem of errors. The perturbations are re-rootings of the symbiont tree to deal with a possibly wrong placement of the root specially in the case of fast-evolving species. In order to do this robustness analysis, we introduce a simulation scheme specifically designed for the host-symbiont cophylogeny context, as well as a measure to compare sets of tree reconciliations, both of which are of interest by themselves.


Cophylogeny Parsimony Event-based methods Robustness Measure for tree reconciliation comparison 



The authors would like to express their gratitude to Christian Gautier for fruitful preliminary discussions on this work.


  1. 1.
    Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinf. 28(12), i283–i291 (2012)CrossRefGoogle Scholar
  2. 2.
    Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C., Sagot, M.F.: Cophylogeny reconstruction via an approximate Bayesian computation. Syst. Biol. 64(3), 416–431 (2015)CrossRefGoogle Scholar
  3. 3.
    Charleston, M.A.: Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149(2), 191–223 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Charleston, M.A.: Recent results in cophylogeny mapping. Adv. Parasitol. 54, 303–330 (2003)CrossRefGoogle Scholar
  5. 5.
    Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algo. Mol. Biol. 5(16), 1–10 (2010)Google Scholar
  6. 6.
    Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.F.: EUCALYPT: efficient tree reconciliation enumerator. Algo. Mol. Biol. 10(1), 3 (2014)CrossRefGoogle Scholar
  7. 7.
    Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Górecki, P., Eulenstein, O., Tiuryn, J.: Unrooted tree reconciliation: a unified approach. IEEE/ACM Trans. Comput. Biology Bioinf. 10(2), 522–536 (2013)CrossRefGoogle Scholar
  9. 9.
    Holland, B., Penny, D., Hendy, M.: Outgroup misplacement and phylogenetic inaccuracy under a molecular clock: a simulation study. Syst. Biol. 52(2), 229–238 (2003)CrossRefGoogle Scholar
  10. 10.
    Keller-Schmidt, S., Wieseke, N., Klemm, K., Middendorf, M.: Evaluation of host parasite reconciliation methods using a new approach for cophylogeny generation. Technical report, University of Leipzig (2011).
  11. 11.
    Kosters, W.A., Laros, J.F.J.: Metrics for mining multisets. In: Bramer, M., Coenen, F., Petridis, M. (eds.) Research and Development in Intelligent Systems XXIV, pp. 293–303. Springer, London (2008)CrossRefGoogle Scholar
  12. 12.
    Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence timing information. Theory Biosci. 123(4), 277–299 (2005)CrossRefGoogle Scholar
  13. 13.
    Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinf. 11(Suppl 1), S60 (2010)CrossRefGoogle Scholar
  14. 14.
    Nei, M., Kumar, S.: Molecular evolution and phylogenetics. Oxford Univ, Press (2000)Google Scholar
  15. 15.
    Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Page, R.D.M.: Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10(2), 155–173 (1994)CrossRefGoogle Scholar
  17. 17.
    Paterson, A.M., Gray, R.D., Clayton, D.H., Moore, J.: Host-parasite co-speciation, host switching, and missing the boat. In: Clayton, D.H., Moore, J. (eds.) Host-parasite evolution: general principles and avian models, pp. 236–250. Oxford University Press, Oxford (1997)Google Scholar
  18. 18.
    Qiu, Y.L., Lee, J., Whitlock, B.A., Bernasconi-Quadroni, F., Dombrovska, O.: Was the anita rooting of the angiosperm phylogeny affected by long-branch attraction? Mol. Biol. Evol. 18(9), 1745–1753 (2001)CrossRefGoogle Scholar
  19. 19.
    Sanderson, M.J., Shaffer, H.B.: Troubleshooting molecular phylogenetic analyses. Annu. Rev. Ecol. Syst. 33, 49–72 (2002)CrossRefGoogle Scholar
  20. 20.
    Stavrinides, J., Guttman, D.S.: Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 78(1), 76–82 (2004)CrossRefGoogle Scholar
  21. 21.
    Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinf. 28(18), i409–i415 (2012)CrossRefGoogle Scholar
  22. 22.
    Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic inference. In: Hillis, D.M., Moritz, C., Mable, B.K. (eds.) Molecular systematics, pp. 407–514. Sinauer Associates Inc, Sunderland (1996)Google Scholar
  23. 23.
    Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 8(2), 517–535 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Laura Urbini
    • 1
    • 2
    • 3
  • Blerina Sinaimeri
    • 1
    • 2
    • 3
    Email author
  • Catherine Matias
    • 4
  • Marie-France Sagot
    • 1
    • 2
    • 3
  1. 1.Université Lyon 1VilleurbanneFrance
  2. 2.CNRS, UMR5558, Laboratoire de Biométrie Et Biologie ÉvolutiveVilleurbanneFrance
  3. 3.INRIA Grenoble Rhône - AlpesMontbonnot-Saint-MartinFrance
  4. 4.Sorbonne Universités, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, Laboratoire de Probabilités et Modèles AléatoiresParisFrance

Personalised recommendations