A Quality Model for Linked Data Exploration

  • Cinzia CappielloEmail author
  • Tommaso Di Noia
  • Bogdan Alexandru Marcu
  • Maristella Matera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9671)


Linked (Open) Data (LD) offer the great opportunity to interconnect and share large amounts of data on a global scale, creating added value compared to data published via pure HTML. However, this enormous potential is not completely accessible. In fact, LD datasets are often affected by errors, inconsistencies, missing values and other quality issues that may lower their usage. Users are often not aware of the quality and characteristics of the LD datasets that they use for various and diverse tasks; thus they are not conscious of the effects that poor quality datasets may have on the results of their analyses. In this paper we present our initial results aimed to unleash LD usefulness, by providing a set of quality dimensions able to drive the selection and evaluation of LD sources. As a proof of concepts, we applied our model for assessing the quality of two LD datasets.


Linked Data (LD) Data quality Quality models for LD 



We are grateful to the students that helped us validate the model by developing tools to download and analyze the DBpedia and LinkedMDB datasets.


  1. 1.
    Barbagallo, D., Cappiello, C., Francalanci, C., Matera, M.: Reputation-based selection of information sources. In: Proceedings of ICEIS 2010 (2010)Google Scholar
  2. 2.
    Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41(3), 1–52 (2009)CrossRefGoogle Scholar
  3. 3.
    Bianchini, D., De Antonellis, V., Melchiori, M.: A linked data perspective for effective exploration of web APIs repositories. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 506–509. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. Web Semant. Sci. Serv. Agents World Wide Web 7(1), 1–10 (2009). The Semantic Web and PolicyCrossRefGoogle Scholar
  5. 5.
    Cappiello, C., Daniel, F., Matera, M.: A quality model for mashup components. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 236–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information quality in mashups. IEEE Internet Comput. 14(4), 14–22 (2010)CrossRefGoogle Scholar
  7. 7.
    Desolda, G.: Enhancing workspace composition by exploiting linked open data as a polymorphic data source. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G. (eds.) Intelligent Interactive Multimedia Systems and Services. Smart Innovation, Systems and Technologies, vol. 40, pp. 97–108. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Di Noia, T., Ostuni, V.C., Rosati, J., Tomeo, P., Di Sciascio, E., Mirizzi, R., Bartolini, C.: Building a relatedness graph from linked open data: a case study in the IT domain. Expert Syst. Appl. 44, 354–366 (2016)CrossRefGoogle Scholar
  9. 9.
    Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An empirical survey of linked data conformance. J. Web Sem. 14, 14–44 (2012)CrossRefGoogle Scholar
  10. 10.
    Juran, J.M.: The Quality Control Handbook. McGraw-Hill, New York (1974)Google Scholar
  11. 11.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Srivastava, D., Ari, I. (eds.) Proceedings of the Joint EDBT/ICDT Workshops, Berlin, Germany, 30 March 2012, pp. 116–123. ACM (2012)Google Scholar
  12. 12.
    Rula, A., Zaveri, A.: Methodology for assessment of linked data quality. In: Knuth, M., Kontokostas, D., Sack, H. (eds.) Proceedings of the 1st Workshop on Linked Data Quality Co-located with 10th International Conference on Semantic Systems, LDQ@SEMANTiCS. CEUR Workshop Proceedings, vol. 1215, Leipzig, Germany, 2 September 2014. (2014)Google Scholar
  13. 13.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  14. 14.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cinzia Cappiello
    • 1
    Email author
  • Tommaso Di Noia
    • 2
  • Bogdan Alexandru Marcu
    • 1
  • Maristella Matera
    • 1
  1. 1.Politecnico di Milano - DEIBMilanoItaly
  2. 2.Politecnico di Bari - DEIBariItaly

Personalised recommendations