Diversity in Urban Social Media Analytics

  • Jie YangEmail author
  • Claudia Hauff
  • Geert-Jan Houben
  • Christiaan Titos Bolivar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9671)


Social media has emerged as one of the data backbones of urban analytics systems. Thanks to geo-located microposts (text-, image-, and video-based) created and shared through portals such as Twitter and Instagram, scientists and practitioners can capitalise on the availability of real-time and semantically rich data sources to perform studies related to cities and the people inhabiting them. Urban analytics systems usually consider the micro posts originating from within a city’s boundary uniformly, without consideration for the demographic (e.g. gender, age), geographic, technological or contextual (e.g. role in the city) differences among a platform’s users. It is well-known though, that the usage and adoption of social media profoundly differ across user segments, cities, as well as countries. We thus advocate for a better understanding of the intrinsic diversity of social media users and contents.

This paper presents an observational study of the geo-located activities of users across two social media platforms, performed over a period of three weeks in four European cities. We show how demographic, geographical, technological and contextual properties of social media (and their users) can provide very different reflections and interpretations of the reality of an urban environment.


Social sensing Urban analytics User analysis 



This work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative.


  1. 1.
    Al-Zahrani, M.S., Bissada, N.F., Borawski, E.A.: Obesity and periodontal disease in young, middle-aged, and older adults. J. Periodontol. 74(5), 610–615 (2003)CrossRefGoogle Scholar
  2. 2.
    Balduini, M., Bocconi, S., Bozzon, A., Valle, E.D., Huang, Y., Oosterman, J., Palpanas, T., Tsytsarau, M.: A case study of active, continuous and predictive social media analytics for smart city. In: Proceedings of the Fifth International Conference on Semantics for Smarter Cities, S4SC 2014, vol. 1280, pp. 31–46, Aachen, Germany (2014). CEUR-WS.orgGoogle Scholar
  3. 3.
    Balduini, M., Bozzon, A., Valle, E.D., Huang, Y., Houben, G.: Recommending venues using continuous predictive social media analytics. IEEE Internet Comput. 18(5), 28–35 (2014)CrossRefGoogle Scholar
  4. 4.
    Bernaschina, C., Catallo, I., Ciceri, E., Fedorov, R., Fraternali, P.: Towards an unbiased approach for the evaluation of social data geolocation. In: Proceedings of the 9th Workshop on Geographic Information Retrieval, GIR 2015, pp. 10:1–10:2. ACM, New York, NY, USA (2015)Google Scholar
  5. 5.
    Bocconi, S., Bozzon, A., Psyllidis, A., Titos Bolivar, C., Houben, G.-J.: Social glass: a platform for urban analytics and decision-making through heterogeneous social data. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015 Companion, pp. 175–178 (2015)Google Scholar
  6. 6.
    Bojic, I., Massaro, E., Belyi, A., Sobolevsky, S., Ratti, C.: Choosing the right home location definition method for the given dataset. In: Liu, T.-Y., et al. (eds.) SocInfo 2015. LNCS, vol. 9471, pp. 194–208. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27433-1_14 CrossRefGoogle Scholar
  7. 7.
    Bozzon, A., Brambilla, M., Ceri, S., Mauri, A., Volonterio, R.: Pattern-based specification of crowdsourcing applications. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 218–235. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Bozzon, A., Fraternali, P., Galli, L., Karam, R.: Modeling crowdsourcing scenarios in socially-enabled human computation applications. J. Data Seman. 3(3), 169–188 (2013)CrossRefGoogle Scholar
  9. 9.
    Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp. 81–88. AAAI (2011)Google Scholar
  10. 10.
    Correa, T., Hinsley, A.W., De Zuniga, H.G.: Who interacts on the web?: the intersection of users personality and social media use. Comput. Hum. Behav. 26(2), 247–253 (2010)CrossRefGoogle Scholar
  11. 11.
    Crampton, J.W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M.W., Zook, M.: Beyond the geotag: situating ‘big data’ and leveraging the potential of the geoweb. Cartography Geogr. Inf. Sci. 40(2), 130–139 (2013)CrossRefGoogle Scholar
  12. 12.
    Cranshaw, J., Schwartz, R., Hong, J.I., Sadeh, N.M.: The livehoods project: utilizing social media to understand the dynamics of a city. In: Breslin, J.G., Ellison, N.B., Shanahan, J.G., Tufekci, Z. (eds.) Proceedings of the 6th International AAAI Conference on Weblogs and Social Media. The AAAI Press (2012)Google Scholar
  13. 13.
    Boyd, D., Crawford, K.: Critical questions for big data. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRefGoogle Scholar
  14. 14.
    Del Bimbo, A., Ferracani, A., Pezzatini, D., D’Amato, F., Sereni, M.: Livecities: revealing the pulse of cities by location-based social networks venues and users analysis. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, Republic and Canton of Geneva, Switzerland, International World Wide Web Conferences Steering Committee, pp. 163–166 (2014)Google Scholar
  15. 15.
    Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., Ratti, C.: Geo-located Twitter as proxy for global mobility patterns. Cartography Geogr. Inf. Sci. 41(3), 260–271 (2014)CrossRefGoogle Scholar
  16. 16.
    Kindberg, T., Chalmers, M., Paulos, E.: Guest editors’ introduction: urban computing. IEEE Pervasive Comput. 6(3), 18–20 (2007)CrossRefGoogle Scholar
  17. 17.
    Kostakos, V., O’Neill, E.: Cityware: urban computing to bridge online and real-world social networks. In: Foth, M. (ed.) Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City. Information Science Reference, Hershey, Philadelphia, USA (2008)Google Scholar
  18. 18.
    Lee, R., Sumiya, K.: Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, LBSN 2010, pp. 1–10. ACM, New York, NY, USA (2010)Google Scholar
  19. 19.
    Malatesta, C.Z., Izard, C.E., Culver, C., Nicolich, M.: Emotion communication skills in young, middle-aged, and older women. Psychol. Aging 2(2), 193 (1987)CrossRefGoogle Scholar
  20. 20.
    McKenzie, G., Janowicz, K., Gao, S., Gong, L.: How where is when? On the regional variability and resolution of geosocial temporal signatures for points of interest. Comput. Environ. Urban Syst. 54, 336–346 (2015)CrossRefGoogle Scholar
  21. 21.
    Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C.: A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7(5), e37027 (2012)CrossRefGoogle Scholar
  22. 22.
    Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: Exploiting semantic annotations for clustering geographic areas and users in location-based social networks. In: The Social Mobile Web, Papers from the ICWSM Workshop, Barcelona, Catalonia, Spain, 21 July 2011Google Scholar
  23. 23.
    Palfrey, J., Gasser, U.: Born Digital: Understanding the First Generation of Digital Natives. Basic Books Inc., New York (2008)Google Scholar
  24. 24.
    Paraskevopoulos, P., Palpanas, T.: Fine-grained geolocalisation of non-geotagged tweets. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 105–112. ACM (2015)Google Scholar
  25. 25.
    Pater, J.A., Miller, A.D., Mynatt, E.D.: This digital life: a neighborhood-based study of adolescents’ lives online. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2305–2314. ACM, New York, NY, USA (2015)Google Scholar
  26. 26.
    Psyllidis, A., Bozzon, A., Bocconi, S., Titos Bolivar, C.: A platform for urban analytics and semantic data integration in city planning. In: Celani, G., Sperling, D.M., Franco, J.M.S. (eds.) Computer-Aided Architectural Design Futures. The Next City - New Technologies and the Future of the Built Environment. CCIS, vol. 527, pp. 21–36. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  27. 27.
    Tranos, E., Nijkamp, P.: Mobile phone usage in complex urban systems: a space-time, aggregated human activity study. J. Geogr. Syst. 17(2), 157–185 (2015)CrossRefGoogle Scholar
  28. 28.
    Wakamiya, S., Lee, R., Sumiya, K.: Crowd-based urban characterization: Extracting crowd behavioral patterns in urban areas from Twitter. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 77–84. ACM, New York, NY, USA (2011)Google Scholar
  29. 29.
    Wang, Z., Zhou, X., Zhang, D., Yang, D., Yu, Z.: Cross-domain community detection in heterogeneous social networks. Pers. Ubiquit. Comput. 18(2), 369–383 (2014)CrossRefGoogle Scholar
  30. 30.
    Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jie Yang
    • 1
    Email author
  • Claudia Hauff
    • 1
  • Geert-Jan Houben
    • 1
  • Christiaan Titos Bolivar
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations