A Multiagent Ab Initio Protein Structure Prediction Tool for Novices and Experts

  • Thiago Lipinski-Paes
  • Michele dos Santos da Silva Tanus
  • José Fernando Ruggiero Bachega
  • Osmar Norberto de SouzaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9683)


Proteins are vital to most biological processes by performing a variety of functions. Structure and function are intimately related, thus highlighting the importance of predicting a proteins 3-D conformation. We propose GMASTERS, a multiagent tool to address the protein structure prediction (PSP) problem. GMASTERS is a general-purpose ab initio graphical program based on cooperative agents that explore the protein conformational space using Monte Carlo and Simulated Annealing methods. The user can choose the abstraction level, energy function and force field to perform simulations. Because bioinformatics demands knowledge from diverse scientific fields, its tools are intrinsically complex. GMASTERS abstracts away some of this complexity while still allowing the user to learn and explore research hypotheses with the advantage of an embedded graphical interface. Although this abstraction comes at a cost, its performance is similar to state-of-the-art methods. Here, we describe GMASTERS and how to use it to explore the PSP problem.


PSP Problem Multiagent system Monte Carlo AB model 



This work was supported by grants CNPq-305984/20128 and FAPERGS-TO2054-2551/13-0 to ONS, a CNPq Research Fellow. TLP and MSS are supported by CAPES, JFRB by a CAPES/FAPERGS DOCFIX postdoctoral fellowship.


  1. 1.
    Lesk, A.M.: Introduction to Bioinformatics, 3rd edn. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  2. 2.
    Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Genbank. Nucleic Acids Res. 44, D67–D72 (2016)CrossRefGoogle Scholar
  3. 3.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRefGoogle Scholar
  4. 4.
    Pavlopoulou, A., Michalopoulos, I.: State-of-the-art bioinformatics protein structure prediction tools. Int. J. Mol. Med. 28(3), 295–310 (2011)Google Scholar
  5. 5.
    Dill, K., MacCallum, J.: The protein-folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)CrossRefGoogle Scholar
  6. 6.
    Duan, Y., Kollman, P.A.: Computational protein folding: from lattice to all-atom. IBM Syst. J. 40(297–309), 0018–8670 (2001)Google Scholar
  7. 7.
    Amigoni, F., Schiaffonati, V.: Multiagent-based simulation in biology. In: Magnani, L., Li, P. (eds.) Model-based Reasoning in Science, Technology, and Medicine, SCI, vol. 64, pp. 179–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Tisseau, J.: Virtual reality, in virtuo autonomy. Ph.D. thesis, University of Rennes 1 (2001)Google Scholar
  9. 9.
    Nelson, D., Cox, M.: Lehninger Principles of Biochemistry, 5th edn. W. H. Freeman and Company, New York (2008)Google Scholar
  10. 10.
    Snow, C.D., Sorin, E.J., Rhee, Y.M., Pande, V.S.: How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. 34, 43–69 (2005). Annual Reviews, Palo AltoCrossRefGoogle Scholar
  11. 11.
    Zvelebil, M., Baum, J.: Understanding Bioinformatics. Garland Science, US (2007)zbMATHGoogle Scholar
  12. 12.
    Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. J. Comput. Biol. 5, 597–603 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Levinthal, C.: Are there pathways for protein folding? J. Med. Phys. 65(1), 44–45 (1968)Google Scholar
  14. 14.
    Tramontano, A.: Integral and differential form of the protein folding problem. Phys. Life Rev. 1(2), 103–127 (2004)CrossRefGoogle Scholar
  15. 15.
    Helles, G.: A comparative study of the reported performance of ab initio protein structure prediction algorithms. J. Roy. Soc. Interface 5(21), 387–396 (2008)CrossRefGoogle Scholar
  16. 16.
    Wooldridge, M., Jennings, N.: Intelligent agents - theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  17. 17.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)zbMATHGoogle Scholar
  18. 18.
    Bradshaw, J.M.: An introduction to software agents. In: Bradshaw, J.M. (ed.) Software Agents, pp. 3–46. AAAI Press / The MIT Press, Cambridge (1997)Google Scholar
  19. 19.
    Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity (2004)Google Scholar
  20. 20.
    Lipinski-Paes, T., Norberto de Souza, O.: MASTERS: a general sequence-based multiagent system for protein tertiary structure prediction. Electron. Notes Theor. Comput. Sci. 306, 45–59 (2014)CrossRefGoogle Scholar
  21. 21.
    Osguthorpe, D.J.: Ab initio protein folding. Curr. Opin. Struct. Biol. 10(2), 146–152 (2000)CrossRefGoogle Scholar
  22. 22.
    Roli, A., Milano, M.: MAGMA: a multiagent architecture for metaheuristics. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34, 925–941 (2004)CrossRefGoogle Scholar
  23. 23.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  24. 24.
    Allen, P., Tildesley, D.: Computer Simulation of Liquids. Oxford science publications, Clarendon Press (1987)zbMATHGoogle Scholar
  25. 25.
    Schrödinger, L.L.C.: The PyMOL molecular graphics system, February 2016Google Scholar
  26. 26.
    Bachega, J.F.R., Timmers, L.F.S.M., Assirati, L., Bachega, L.R., Field, M.J., Wymore, T.: GTKDynamo: A PyMOL plug-in for QC/MM hybrid potential simulations. J. Comput. Chem. 34(25), 2190–2196 (2013)CrossRefGoogle Scholar
  27. 27.
    Dill, K.: Theory for the folding and stability of globular-proteins. Biochemistry 24(6), 1501–1509 (1985)CrossRefGoogle Scholar
  28. 28.
    William, E.H., Alantha, N.: Protein structure prediction with lattice models. Chapman & Hall/CRC Computer & Information Science Series, pp. 30-1–30-24. Chapman and Hall/CRC (2005)Google Scholar
  29. 29.
    Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5(1), 27–40 (1998)CrossRefGoogle Scholar
  30. 30.
    Bachmann, M., Arkin, H., Janke, W.: Multicanonical study of coarse-grained off-lattice models for folding heteropolymers. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 71(3), 031906 (2005). doi: 10.1103/PhysRevE.71.031906 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hsu, H.P., Mehra, V., Grassberger, P.: Structure optimization in an off-lattice protein model. Physical Review E 68(3), 037703 (2003). doi: 10.1103/PhysRevE.68.037703 CrossRefGoogle Scholar
  32. 32.
    Stillinger, F., Head-Gordon, T.: Collective aspects of protein-folding illustrated by a toy model. Phys. Rev. E 52(3), 2872–2877 (1995)CrossRefGoogle Scholar
  33. 33.
    Irback, A., Peterson, C., Potthast, F., Sommelius, O.: Local interactions and protein folding: a three-dimensional off-lattice approach. J. Chem. Phys. 107(1), 273–282 (1997)CrossRefGoogle Scholar
  34. 34.
    Stillinger, F., Head-Gordon, T., Hirshfeld, C.: Toy model for protein-folding. Phys. Rev. E 48(2), 1469–1477 (1993)CrossRefGoogle Scholar
  35. 35.
    Krezel, A.M., Kasibhatla, C., Hidalgo, P., Mackinnon, R., Wagner, G.: Solution structure of the potassium channel inhibitor agitoxin 2: Caliper for probing channel geometry. Protein Sci. 4(8), 1478–1489 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thiago Lipinski-Paes
    • 1
  • Michele dos Santos da Silva Tanus
    • 1
  • José Fernando Ruggiero Bachega
    • 1
  • Osmar Norberto de Souza
    • 1
    Email author
  1. 1.Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas - LABIOPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations