Early Phase Estimation of Variety Induced Complexity Cost Effects: A Study on Industrial Cases in Germany

  • Sandra Eilmus
  • Thomas Gumpinger
  • Thomas Kipp
  • Olga Sankowski
  • Dieter Krause


Offering a broad external market variety at competitive prices is one of the main challenges in the global competition among mechanical engineering branches. Reducing variety and thus variety induced complexity cost has evolved to become one of the crucial global success factors. The aim of this study is to get insights on variety induced complexity cost effects and to elaborate on how these effects can be influenced by modular product development. Firstly, general causes and effects of variety are described portraying their trans-disciplinary nature. Next, the state of the art in reducing variety by modular product development is explained. Hypotheses on cost effects of variety induced complexity are introduced; and industrial cases from Germany are evaluated in order to support the hypotheses. During these empirical case studies, an integrated approach for developing modular product families by including various corporate disciplines is applied. This trans-disciplinary procedure aims to reduce variety over the whole product life by modularization. The results obtained and their potential effects on complexity cost are presented and discussed. Based on the analysis of these cases, an approach for Early Phase Estimation of Complexity Cost (EPECC) is developed. This approach helps assess trans-disciplinary complexity cost effects of different modular concept alternatives in early design phases. Furthermore, the effect of branch specific lot sizes on complexity cost is illustrated. Factors related to the successful use of these effects in branches and segments with high and low lot sizes are shared from industrial and consultancy practices. This contribution is authored by a team of academicians, consultants, and industrial executives.


Product Family Code Number Electrical Device Cost Effect Design Structure Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Verband Deutscher Maschinen- und Anlagenbau e.V., & McKinsey & Company (Eds.). (2014). The future of German mechanical engineering. Frankfurt, Germany: Verband Deutscher Maschinen- und Anlagenbau e.VGoogle Scholar
  2. 2.
    Ripperda, S., & Krause, D. (2013). Komplexitätskosteneffekte modularer Produktfamilien. In D. Krause, K. Paetzhold, S. Wartzack (Eds.), Design for X. Beiträge zum 24. DfX-Symposium Oktober 2013, 24. Hamburg: Aufl. TuTech Innovation.Google Scholar
  3. 3.
    Brosch, M., & Krause, D. (2011). Complexity from the perspective of the design for supply chain requirements (pp. 102–116). Hamburg, Germany: TuTech VerlagGoogle Scholar
  4. 4.
    Eppinger, S. D., & Browning, T. R. (2012). Design structure matrix methods and applications. Cambridge, MA: MIT Press.Google Scholar
  5. 5.
    Pine, B. J. (1993). Mass customization. The new frontier in business competition. Boston, MA: Harvard Business School Press.Google Scholar
  6. 6.
    Salvador, F. (2007). Toward a product system modularity construct: Literature review and reconceptualization. IEEE Transaction on Engineering in Management, 54, 219–240.CrossRefGoogle Scholar
  7. 7.
    Robertson, D., & Ulrich, K. (1998). Planning for product platforms. Sloan Management Review, 39(4), 19–31.Google Scholar
  8. 8.
    Simpson, T. W. (Ed.). (2013). Advances in product family and product platform design. Methods & applications. New York: Springer.Google Scholar
  9. 9.
    Jiao, J., & Tseng, M. (2000). Understanding product family for mass customization by developing commonality indices. Journal of Engineering Design, 11(3), 225–243. doi: 10.1080/095448200750021003.CrossRefGoogle Scholar
  10. 10.
    Du, X., Jiao, J., & Tseng, M. M. (2001). Architecture of product family: Fundamentals and methodology. Concurrent Engineering, 9(4), 309–325. doi: 10.1177/1063293X0100900407.CrossRefGoogle Scholar
  11. 11.
    Haug, A., Hvam, L., & Mortensen, N. H. (2013). Reducing variety in product solution spaces of engineer-to-order companies: The case of Novenco A/S. IJPD, 18(6), 531. doi: 10.1504/IJPD.2013.058556.CrossRefGoogle Scholar
  12. 12.
    Simpson, T. W., Bobuk, A., Slingerland, L. A., et al. (2012). From user requirements to commonality specifications: an integrated approach to product family design. Research Engineering Design, 23(2), 141–153. doi: 10.1007/s00163-011-0119-4.CrossRefGoogle Scholar
  13. 13.
    de Weck, O. L., Suh, E. S., & Chang, D. (2003). Product family and platform portfolio optimization (pp. 175–185).Google Scholar
  14. 14.
    Hölttä-Otto, K. (2005). Modular product platform design. Helsinki: Helsinki University of Technology.Google Scholar
  15. 15.
    Erixon, G. (1998). Modular function deployment. A method for product modularisation. Stockholm: The Royal Institute of Technology, Department of Manufacturing Systems, Assembly Systems Division.Google Scholar
  16. 16.
    Krause, D., Beckmann, G., Eilmus, S., et al. (2013). Integrated development of modular product families: A methods toolkit. In T. W. Simpson (Ed.), Advances in product family and product platform design. Methods & applications (pp. 245–269). New York: Springer.Google Scholar
  17. 17.
    Thonemann, U. W., & Brandeau, M. L. (2000). Optimal commonality in component design. Operations Research, 48(1), 1–19.CrossRefGoogle Scholar
  18. 18.
    Ehrlenspiel, K., Kiewert, A., Lindemann, U., et al. (2007). Cost-efficient design. Heidelberg, New York: Springer, ASME Press.CrossRefGoogle Scholar
  19. 19.
    Schuh, G. (1989). Gestaltung und Bewertung von Produktvarianten. Ein Beitrag zur systematischen Planung von Serienprodukten. Technische Hochschule Dissertation—Aachen, Als Ms. gedr. Berichte aus der Produktionstechnik, Vol. 177. Düsseldorf: VDI-Verl.Google Scholar
  20. 20.
    Park, J., & Simpson, T. W. (2006). An activity-based costing method to support product family design. In T. W. Simpson, Z. Siddique, & J. Jiao (Eds.), Product platform and product family design. Methods and applications. New York: Springer.Google Scholar
  21. 21.
    Pfeiffer, W. (1992). Variantenkostenrechnung. In W. Männel (Ed.), Handbuch Kostenrechnung (pp. 861–877). Wiesbaden, Germany: Gabler-Verlag.Google Scholar
  22. 22.
    Tu, Y. L., Xie, S. Q., & Fung, R. (2007). Product development cost estimation in mass customization. IEEE Transactions on Engineering Management, 54(1), 29–40. doi: 10.1109/TEM.2006.889065.CrossRefGoogle Scholar
  23. 23.
    Ripperda, S., & Krause, D. (2014). Costs in modularization approaches: A co-citation analysis. In 13th International Design Conference—Design 2014, pp. 965–974.Google Scholar
  24. 24.
    Fujita, K., Akagi, S., Yoneda, T., et al. (1998). Simultaneous optimization of product family sharing system structure and configuration. In: Proceedings of DETC’98 Design Engineering Technical Conferences. Atlanta, Georgia, USA: ASME.Google Scholar
  25. 25.
    Sedlmeier, L., Möller, K., Schultze, W., et al. (2013). Kostenwirkung der Modularisierung (KosMo): Entwicklung eines Prognose- und Entscheidungsmodells für Markt- und Kosteneffekte von Modularisierungskonzepten. In: Schriftenreihe Forschungshefte der FVA, Nr. 1081. Frankfurt, Germany: Forschungsvereinigung Antriebstechnik e.V.Google Scholar
  26. 26.
    Eilmus, S., & Krause, D. (2013). Product life-oriented development of component commonality and variety. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition (IMECE2013), San Diego. Google Scholar
  27. 27.
    Kipp, T. (2012). Methodische Unterstützung der variantengerechten Produktgestaltung (Hamburger Schriftenreihe Produktentwicklung und Konstruktionstechnik 1st ed., Vol. 4). Hamburg: TuTech Verl.Google Scholar
  28. 28.
    Blees, C., Kipp, T., Beckmann, G., et al. (2010). Development of modular product families: Integration of design for variety and modularization. In: A. Dagman & R. Söderberg (Eds.), NordDesign 2010. Proceedings of the 8th biannual conference NordDesign 2010. Product and Production Development (pp. 159–170). Göteborg: Chalmers University of Technology.Google Scholar
  29. 29.
    Eilmus, S., Ripperda, S., & Krause, D. (2013, August, 19–22). Towards the development of commonal product programs. In Proceedings of iced13. 19th International Conference on Engineering Design (ICED13), Design for Harmonies (Vol. 4, pp. 209–218). Seoul: Design Society.Google Scholar
  30. 30.
    Wildemann, H. (2000). Komplexitätsmanagement. Vertrieb, Produkte, Beschaffung, F & E, Produktion und Administration (TCW-Report Nr. 20). München: Verl. TCW Transfer-Centrum.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sandra Eilmus
    • 1
  • Thomas Gumpinger
    • 1
  • Thomas Kipp
    • 2
  • Olga Sankowski
    • 3
  • Dieter Krause
    • 3
  1. 1.Odego GmbHHamburgGermany
  2. 2.Knorr-Bremse Systeme für Schienenfahrzeuge GmbHMünchenGermany
  3. 3.Institute for Product Development and Mechanical Engineering Design (PKT), Hamburg University of TechnologyHamburgGermany

Personalised recommendations