Pathology and Molecular Pathology of Lung Cancer

  • Lucian R. ChirieacEmail author
  • Lester Kobzik


Ongoing preclinical investigations and clinical trials involving new targeted therapies promise to improve survival in patients with lung cancer. Targeted therapeutic agents based on genetic mutations and signaling pathways altered in lung cancer have added significantly to our armamentarium for lung cancer treatment while minimizing drug toxicity. To date, four targeted therapies have been approved for treatment of lung cancer by the U.S. Food and Drug Administration (FDA): gefitinib in 2002, erlotinib in 2003, bevacizumab in 2006, and crizotinib in 2011. This chapter describes the basic molecular biology principles and selected molecular diagnostic techniques in lung cancer, focuses on the targeted therapies in lung cancer, the molecular biomarkers that identify patients likely to benefit from these targeted therapies, and the pathologic features correlated with molecular abnormalities in lung cancer. Lastly, new molecular abnormalities described in lung cancer that are predictive to novel promising targeted agents in various phases of clinical trials are discussed. Special emphasis is placed on summarizing evolving technologies useful in the diagnosis and characterization of lung cancer. In conclusion, molecular testing of lung cancer expands the expertize of the pathologists, who will identify the tumor markers that are predictive of sensitivity or resistance to various targeted therapies and allow patients with cancer to be selected for highly effective and less-toxic therapies.


Lung cancer Precision medicine EGFR Targeted therapy ALK NSCLC 


  1. 1.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55 (PubMed PMID: 15870435).CrossRefPubMedGoogle Scholar
  2. 2.
    Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23(25):5900–9 (PubMed PMID: 16043828).CrossRefPubMedGoogle Scholar
  3. 3.
    Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. Non-small cell lung cancer, version 6.2015. J Nat Compr Cancer Netw JNCCN. 2015;13(5):515–24 (PubMed PMID: 25964637).Google Scholar
  4. 4.
    Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20 (PubMed PMID: 22980975. Pubmed Central PMCID: 3557932).Google Scholar
  5. 5.
    Powers S, Mu D. Genetic similarities between organogenesis and tumorigenesis of the lung. Cell Cycle. 2008;7(2):200–4 (PubMed PMID: 18256532).CrossRefPubMedGoogle Scholar
  6. 6.
    Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338(1):89–93 (PubMed PMID: 22906416. Pubmed Central PMCID: 3686996).Google Scholar
  7. 7.
    Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Current topics in developmental biology. 2014;107:207–33 (PubMed PMID: 24439808. Pubmed Central PMCID: 4038302).Google Scholar
  8. 8.
    Corrin B, Nicholson, A. The structure of the normal lungs. In: Corrin B, Nicholson A, editors. The pathology of the lungs. 3rd ed. London: Churchill Livingstone; 2011.Google Scholar
  9. 9.
    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. Official publication of the International Association for the Study of Lung Cancer. 2011 Feb;6(2):244–85 (PubMed PMID: 21252716. Pubmed Central PMCID: 4513953).Google Scholar
  10. 10.
    Edge SB, Byrd DR, Compton CC, et al., editors. AJCC cancer staging handbook. 7th ed. New York: Springer; 2009.Google Scholar
  11. 11.
    Travis W, Brambilla A, Burke A, Marx A, Nicholson A. Pathology and genetics of tumors of the lung, pleura, thymus and heart. World Health Organization Classification of Tumors. Lyon, France: IARC Press; 2015.Google Scholar
  12. 12.
    Travis W. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.Google Scholar
  13. 13.
    Barletta JA, Perner S, Iafrate AJ, Yeap BY, Weir BA, Johnson LA, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2008 (PubMed PMID: 19040416. Epub 2008/12/02. Eng).Google Scholar
  14. 14.
    Motoi N, Szoke J, Riely GJ, Seshan VE, Kris MG, Rusch VW, et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol. 2008;32(6):810–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Finberg KE, Sequist LV, Joshi VA, Muzikansky A, Miller JM, Han M, et al. Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn. 2007;9(3):320–6 (PubMed PMID: 17591931).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haneda H, Sasaki H, Shimizu S, Endo K, Suzuki E, Yukiue H, et al. Epidermal growth factor receptor gene mutation defines distinct subsets among small adenocarcinomas of the lung. Lung Cancer. 2006;52(1):47–52 (PubMed PMID: 16503085. Epub 2006/03/01. eng).Google Scholar
  17. 17.
    Hsieh RK, Lim KH, Kuo HT, Tzen CY, Huang MJ. Female sex and bronchioloalveolar pathologic subtype predict EGFR mutations in non-small cell lung cancer. Chest. 2005;128(1):317–21 (PubMed PMID: 16002952. Epub 2005/07/09. eng).Google Scholar
  18. 18.
    Miller VA, Kris MG, Shah N, Patel J, Azzoli C, Gomez J, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol. 2004;22(6):1103–9 (PubMed PMID: 15020612. Epub 2004/03/17. eng).Google Scholar
  19. 19.
    Matsumoto S, Iwakawa R, Kohno T, Suzuki K, Matsuno Y, Yamamoto S, et al. Frequent EGFR mutations in noninvasive bronchioloalveolar carcinoma. Int J Cancer. 2006;118(10):2498–504 (PubMed PMID: 16353158. Epub 2005/12/15. eng).Google Scholar
  20. 20.
    Jackman DM, Chirieac LR, Janne PA. Bronchioloalveolar carcinoma: a review of the epidemiology, pathology, and treatment. Seminars in respiratory and critical care medicine. 2005;26(3):342–52 (PubMed PMID: 16052436).CrossRefPubMedGoogle Scholar
  21. 21.
    Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995;75(12):2844–52 (PubMed PMID: 7773933. Epub 1995/06/15. eng).Google Scholar
  22. 22.
    Sakao Y, Miyamoto H, Sakuraba M, Oh T, Shiomi K, Sonobe S, et al. Prognostic significance of a histologic subtype in small adenocarcinoma of the lung: the impact of nonbronchioloalveolar carcinoma components. Ann Thorac Surg. 2007;83(1):209–14 (PubMed PMID: 17184664. Epub 2006/12/23. eng).Google Scholar
  23. 23.
    Warth A, Muley T, Meister M, Stenzinger A, Thomas M, Schirmacher P, et al. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol. 2012;30(13):1438–46 (PubMed PMID: 22393100).CrossRefPubMedGoogle Scholar
  24. 24.
    Jackman DM, Chirieac LR, Jänne, Pasi A. Bronchioloalveolar carcinoma: A Review of the Epidemiology, Pathology, and Treatment. Seminars in respiratory and critical care medicine. 2005; VO—26(03):342–52.Google Scholar
  25. 25.
    Terasaki H, Niki T, Matsuno Y, Yamada T, Maeshima A, Asamura H, et al. Lung adenocarcinoma with mixed bronchioloalveolar and invasive components: clinicopathological features, subclassification by extent of invasive foci, and immunohistochemical characterization. Am J Surg Pathol. 2003;27(7):937–51 (PubMed PMID: 12826886).CrossRefPubMedGoogle Scholar
  26. 26.
    Barletta JA, Yeap BY, Chirieac LR. Prognostic significance of grading in lung adenocarcinoma. Cancer. 2010;116(3):659–69 (PubMed PMID: 20014400. Pubmed Central PMCID: 2846761).Google Scholar
  27. 27.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29 (PubMed PMID: 25559415).Google Scholar
  28. 28.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: A Cancer J Clinic. 2015;65(2):87–108.Google Scholar
  29. 29.
    Sato M, Shames DS, Gazdar AF, Minna JD. A translational view of the molecular pathogenesis of lung cancer. J. Thorac. Oncol. Official publication of the International Association for the Study of Lung Cancer. 2007;2(4):327–43 (PubMed PMID: 17409807).Google Scholar
  30. 30.
    Hampton T. Lung cancer trials probe effects of maintenance therapy, targeted agents. JAMA. 2009;302(6):616, 8 (PubMed PMID: 19671897. Epub 2009/08/13. eng).Google Scholar
  31. 31.
    Carter BD, Abnet CC, Feskanich D, Freedman ND, Hartge P, Lewis CE, et al. Smoking and mortality—beyond established causes. N Engl J Med. 2015;372(7):631–40 (PubMed PMID: 25671255).CrossRefPubMedGoogle Scholar
  32. 32.
    Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, et al. A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10(11):1033–4.Google Scholar
  33. 33.
    Schottenfeld D, Fraumeni JF. Cancer epidemiology and prevention. 3rd ed. Oxford; New York: Oxford University Press; 2006. xviii, 1392 p.Google Scholar
  34. 34.
    Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–11 (PubMed PMID: 24911630. Pubmed Central PMCID: 4154221).Google Scholar
  35. 35.
    Turner MC, Krewski D, Pope CA 3rd, Chen Y, Gapstur SM, Thun MJ. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Critical care Med. 2011;184(12):1374–81 (PubMed PMID: 21980033).CrossRefGoogle Scholar
  36. 36.
    Straif K, Cohen A, Samet J. IARC Scientific Publication No. 161: Air Pollution and Cancer 2015. Available from:
  37. 37.
    Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75 (PubMed PMID: 18948947. Pubmed Central PMCID: 2694412. Epub 2008/10/25. eng).Google Scholar
  38. 38.
    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80 (PubMed PMID: 18815398. Epub 2008/09/26. eng).Google Scholar
  39. 39.
    Gerber DE, Oxnard GR, Govindan R. ALCHEMIST: bringing genomic discovery and targeted therapies to early-stage lung cancer. Clin Pharmacol Ther. 2015;97(5):447–50 (PubMed PMID: 25677079).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39 (PubMed PMID: 15118073).CrossRefPubMedGoogle Scholar
  41. 41.
    Testa JR, Siegfried JM. Chromosome abnormalities in human non-small cell lung cancer. Cancer Res. 1992;52(9 Suppl):2702s–6s (PubMed PMID: 1314134).PubMedGoogle Scholar
  42. 42.
    Riely GJ, Yu HA. EGFR: The paradigm of an oncogene-driven lung cancer. Clin Cancer Res. 2015;21(10):2221–6 (PubMed PMID: 25979928. Pubmed Central PMCID: 4435716).Google Scholar
  43. 43.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500 (PubMed PMID: 15118125).CrossRefPubMedGoogle Scholar
  44. 44.
    Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med. 2005;353(2):133–44 (PubMed PMID: 16014883).CrossRefPubMedGoogle Scholar
  45. 45.
    Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81 (PubMed PMID: 17318210).CrossRefPubMedGoogle Scholar
  46. 46.
    Gow CH, Shih JY, Chang YL, Yu CJ. Acquired gefitinib-resistant mutation of EGFR in a chemonaive lung adenocarcinoma harboring gefitinib-sensitive mutation L858R. PLoS Med. 2005;2(9):e269 (PubMed PMID: 16173832).CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, et al. Presence of epidermal growth factor receptor gene T790 M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006;66(16):7854–8 (PubMed PMID: 16912157).CrossRefPubMedGoogle Scholar
  48. 48.
    Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92 (PubMed PMID: 15728811).CrossRefPubMedGoogle Scholar
  49. 49.
    Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A. 2005;102(21):7665–70 (PubMed PMID: 15897464).CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73 (PubMed PMID: 15737014).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sholl LM, Yeap BY, Iafrate AJ, Holmes-Tisch AJ, Chou YP, Wu MT, et al. Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Res. 2009;69(21):8341–8 (PubMed PMID: 19826035. Pubmed Central PMCID: 2783286. Epub 2009/10/15. eng).Google Scholar
  52. 52.
    Yu J, Kane S, Wu J, Benedettini E, Li D, Reeves C, et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res. 2009;15(9):3023–8 (PubMed PMID: 19366827. Epub 2009/04/16. eng).Google Scholar
  53. 53.
    Sasaki H, Shimizu S, Endo K, Takada M, Kawahara M, Tanaka H, et al. EGFR and erbB2 mutation status in Japanese lung cancer patients. Int J Cancer. 2006;118(1):180–4 (PubMed PMID: 16003726).CrossRefPubMedGoogle Scholar
  54. 54.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57 (PubMed PMID: 19692680. Epub 2009/08/21. eng).Google Scholar
  55. 55.
    Mok TS, Wu YL, Yu CJ, Zhou C, Chen YM, Zhang L, et al. Randomized, placebo-controlled, phase II study of sequential erlotinib and chemotherapy as first-line treatment for advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(30):5080–7 (PubMed PMID: 19738125. Epub 2009/09/10. eng).Google Scholar
  56. 56.
    Sequist LV, Heist RS, Shaw AT, Fidias P, Rosovsky R, Temel JS, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. Off J Eur Soc Med Oncol/ESMO. 2011;22(12):2616–24 (PubMed PMID: 22071650. Pubmed Central PMCID: 3493130).Google Scholar
  57. 57.
    Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba, II, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. Official publication of the International Association for the Study of Lung Cancer. 2015;10(5):768–77 (PubMed PMID: 25738220. Pubmed Central PMCID: 4410843).Google Scholar
  58. 58.
    Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC, Liu N, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol. 2008;26(26):4268–75 (PubMed PMID: 18626007. Epub 2008/07/16. eng).Google Scholar
  59. 59.
    Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26 (PubMed PMID: 21430269. Pubmed Central PMCID: 3132801).Google Scholar
  60. 60.
    Tang Z, Du R, Jiang S, Wu C, Barkauskas DS, Richey J, et al. Dual MET-EGFR combinatorial inhibition against T790 M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22 (PubMed PMID: 19238632. Pubmed Central PMCID: 2538758. Epub 2009/02/25. eng).Google Scholar
  61. 61.
    Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2009;20(2):298–304 (PubMed PMID: 18836087. Pubmed Central PMCID: 2733067. Epub 2008/10/07. eng).Google Scholar
  62. 62.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43 (PubMed PMID: 17463250. Epub 2007/04/28. eng).Google Scholar
  63. 63.
    West HL, Franklin WA, McCoy J, Gumerlock PH, Vance R, Lau DH, et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group Study S0126. J Clin Oncol. 2006;24(12):1807–13 (PubMed PMID: 16622257. Epub 2006/04/20. eng).Google Scholar
  64. 64.
    Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol. 2008;26(9):1472–8 (PubMed PMID: 18349398. Epub 2008/03/20. eng).Google Scholar
  65. 65.
    Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005;23(4):857–65 (PubMed PMID: 15681531. Epub 2005/02/01. eng).Google Scholar
  66. 66.
    Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97(5):339–46 (PubMed PMID: 15741570).CrossRefPubMedGoogle Scholar
  67. 67.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. Official publication of the International Association for the Study of Lung Cancer. 2013;8(7):823–59 (PubMed PMID: 23552377. Pubmed Central PMCID: 4159960).Google Scholar
  68. 68.
    Kadota K, Yeh YC, D’Angelo SP, Moreira AL, Kuk D, Sima CS, et al. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014;38(8):1118–27 (PubMed PMID: 25029118).PubMedPubMedCentralGoogle Scholar
  69. 69.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50 (PubMed PMID: 17167137. Epub 2006/12/15. eng).Google Scholar
  70. 70.
    West H, Harpole D, Travis W. Histologic considerations for individualized systemic therapy approaches for the management of non-small cell lung cancer. Chest. 2009;136(4):1112–8 (PubMed PMID: 19809052. Epub 2009/10/08. eng).Google Scholar
  71. 71.
    Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22(11):2184–91 (PubMed PMID: 15169807. Epub 2004/06/01. eng).Google Scholar
  72. 72.
    Lamant L, Meggetto F, al Saati T, Brugieres L, de Paillerets BB, Dastugue N, et al. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood. 1996;87(1):284–91 (PubMed PMID: 8547653).Google Scholar
  73. 73.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4 (PubMed PMID: 8122112).CrossRefPubMedGoogle Scholar
  74. 74.
    Swerdlow SH, International Agency for Research on Cancer., World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: International Agency for Research on Cancer; 2008. 439 p.Google Scholar
  75. 75.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6 (PubMed PMID: 17625570).CrossRefPubMedGoogle Scholar
  76. 76.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203 (PubMed PMID: 18083107).CrossRefPubMedGoogle Scholar
  77. 77.
    Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A. 2008;105(50):19893–7 (PubMed PMID: 19064915).CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–83 (PubMed PMID: 18594010).CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703 (PubMed PMID: 20979469. Pubmed Central PMCID: 3014291. Epub 2010/10/29. eng).Google Scholar
  80. 80.
    Rodig SJ, Mino-Kenudson M, Dacic S, Yeap BY, Shaw A, Barletta JA, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15(16):5216–23 (PubMed PMID: 19671850. Epub 2009/08/13. eng).Google Scholar
  81. 81.
    Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A Novel, Highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by Standard Immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71 (PubMed PMID: 20179225. Pubmed Central PMCID: 2831135. Epub 2010/02/25. eng).Google Scholar
  82. 82.
    Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80 (PubMed PMID: 20418096. Pubmed Central PMCID: 2888755).Google Scholar
  83. 83.
    Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53 (PubMed PMID: 19667264. Pubmed Central PMCID: 2744268).Google Scholar
  84. 84.
    Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba, II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998–2006 (PubMed PMID: 24846037. Pubmed Central PMCID: 4163053).Google Scholar
  85. 85.
    Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71 (PubMed PMID: 25264305. Pubmed Central PMCID: 4264527).Google Scholar
  86. 86.
    Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57 (PubMed PMID: 11114734).CrossRefPubMedGoogle Scholar
  87. 87.
    Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005;65(5):1642–6 (PubMed PMID: 15753357).CrossRefPubMedGoogle Scholar
  88. 88.
    Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431(7008):525–6 (PubMed PMID: 15457249).CrossRefPubMedGoogle Scholar
  89. 89.
    Giaccone G. Clinical impact of novel treatment strategies. Oncogene. 2002;21(45):6970–81 (PubMed PMID: 12362278).CrossRefPubMedGoogle Scholar
  90. 90.
    Heist RS, Zhou W, Chirieac LR, Cogan-Drew T, Liu G, Su L, et al. MDM2 polymorphism, survival, and histology in early-stage non-small-cell lung cancer. J Clin Oncol. 2007;25(16):2243–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Azzoli CG, Krug LM, Miller VA, Kris MG, Mass R. Trastuzumab in the treatment of non-small cell lung cancer. Semin Oncol. 2002;29(1 Suppl 4):59–65 (PubMed PMID: 11894015).CrossRefPubMedGoogle Scholar
  92. 92.
    Sadiq AA, Geynisman DM, Salgia R. Inhibition of MET receptor tyrosine kinase and its ligand hepatocyte growth factor. J Thorac Oncol. 2011;6(11 Suppl 4):S1810–1 (PubMed PMID: 22005540. Epub 2011/10/26. eng).Google Scholar
  93. 93.
    Lindor NM, Dechet CB, Greene MH, Jenkins RB, Zincke MT, Weaver AL, et al. Papillary renal cell carcinoma: analysis of germline mutations in the MET proto-oncogene in a clinic-based population. Genet Test. 2001;5(2):101–6 (PubMed PMID: 11551094. Epub 2001/09/12. eng).Google Scholar
  94. 94.
    Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16 (PubMed PMID: 18511928. Epub 2008/05/31. eng).Google Scholar
  95. 95.
    Ma PC, Tretiakova MS, MacKinnon AC, Ramnath N, Johnson C, Dietrich S, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosom Cancer. 2008;47(12):1025–37 (PubMed PMID: 18709663. Pubmed Central PMCID: 2583960. Epub 2008/08/19. eng).Google Scholar
  96. 96.
    Benedettini E, Sholl LM, Peyton M, Reilly J, Ware C, Davis L, et al. Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am J Pathol. 2010;177(1):415–23 (PubMed PMID: 20489150. Pubmed Central PMCID: 2893683. Epub 2010/05/22. eng).Google Scholar
  97. 97.
    Yoshida T, Okamoto I, Okamoto W, Hatashita E, Yamada Y, Kuwata K, et al. Effects of Src inhibitors on cell growth and epidermal growth factor receptor and MET signaling in gefitinib-resistant non-small cell lung cancer cells with acquired MET amplification. Cancer Sci. 2009;101(1):167–72 (PubMed PMID: 19804422. Epub 2009/10/07. eng).Google Scholar
  98. 98.
    Spigel DR, Hainsworth JD, Simons L, Meng C, Burris HA, 3rd, Yardley DA, et al. Irinotecan, carboplatin, and imatinib in untreated extensive-stage small-cell lung cancer: a phase II trial of the Minnie Pearl Cancer Research Network. J Thorac Oncol. 2007;2(9):854–61 (PubMed PMID: 17805064. Epub 2007/09/07. eng).Google Scholar
  99. 99.
    Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–34 (PubMed PMID: 26014593).CrossRefPubMedGoogle Scholar
  100. 100.
    Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC) 2011.Google Scholar
  101. 101.
    Morgensztern D, Politi K, Herbst RS. EGFR mutations in non-small-cell lung cancer: find, divide, and conquer. JAMA Oncol. 2015;1(2):146–8 (PubMed PMID: 26181013).CrossRefPubMedGoogle Scholar
  102. 102.
    Hayden EC. Technology: The $1,000 genome. Nature. 2014;507(7492):294–5 (PubMed PMID: 24646979).CrossRefPubMedGoogle Scholar
  103. 103.
    Lander ES. Cutting the Gordian helix—regulating genomic testing in the era of precision medicine. N Engl J Med. 2015;372(13):1185–6 (PubMed PMID: 25689017).CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Harvard Medical SchoolBrigham and Women’s HospitalBostonUSA

Personalised recommendations