Skip to main content

Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

BMP:

Bone morphogenetic protein

cAMP:

Cyclic adenosine monophosphate

CREB:

cAMP response element-binding protein

ECM:

Extracellular matrix

HH:

Hedgehog

IHH:

Indian Hedgehog

MAPK:

Mitogen-activated protein kinase

NFAT:

Nuclear factor of activated T cells

PAC1:

Pituitary adenylate cyclase-activating polypeptide type I receptor

PACAP:

Pituitary adenylate cyclase polypeptide

PKA:

Protein kinase A

PKC:

Protein kinase C

PP2A:

Protein phosphatase 2A

PP2B:

Protein phosphatase 2B

PTHrP:

Parathyroid hormone related peptide

Runx2:

Runt-related transcription factor 2

SHH:

Sonic Hedgehog

TGFβ:

Transforming growth factor-β

VIP:

Vasoactive intestinal polypeptide

VPAC:

Vasoactive intestinal peptide receptor

References

  1. Yan JY, Tian FM, Wang WY, Cheng Y, Song HP, Zhang YZ, et al. Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage. 2014;22:1869–77.

    Article  PubMed  Google Scholar 

  2. Rais Y, Reich A, Simsa-Maziel S, Moshe M, Idelevich A, Kfir T, et al. The growth plate’s response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci. 2015;72:597–615.

    Article  CAS  PubMed  Google Scholar 

  3. Barrett-Jolley R, Lewis R, Fallman R, Mobasheri A. The emerging chondrocyte channelome. Front Physiol. 2010;1:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paiva KB, Granjeiro JM. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys. 2014;561C:74–87.

    Article  CAS  Google Scholar 

  5. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  6. Moody TW, Hill JM, Jensen RT. VIP as a trophic factor in the CNS and cancer cells. Peptides. 2003;24:163–77.

    Article  CAS  PubMed  Google Scholar 

  7. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  8. Reglodi D, Tamas A, Koppan M, Szogyi D, Welke L. Role of PACAP in female fertility and reproduction at gonadal level—recent advances. Front Endocrinol (Lausanne). 2012;3:155.

    Google Scholar 

  9. Koppan M, Varnagy A, Reglodi D, Brubel R, Nemeth J, Tamas A, et al. Correlation between oocyte number and follicular fluid concentration of pituitary adenylate cyclase-activating polypeptide (PACAP) in women after superovulation treatment. J Mol Neurosci. 2012;48:617–22.

    Article  CAS  PubMed  Google Scholar 

  10. Sandor B, Fintor K, Felszeghy S, Juhasz T, Reglodi D, Mark L, et al. Structural and morphometric comparison of the molar teeth in pre-eruptive developmental stage of PACAP-deficient and wild-type mice. J Mol Neurosci. 2014;54:331–41.

    Article  CAS  PubMed  Google Scholar 

  11. Csanaky K, Banki E, Szabadfi K, Reglodi D, Tarcai I, Czegledi L, et al. Changes in PACAP immunoreactivity in human milk and presence of PAC1 receptor in mammary gland during lactation. J Mol Neurosci. 2012;48:631–7.

    Article  CAS  PubMed  Google Scholar 

  12. Giunta S, Castorina A, Marzagalli R, Szychlinska MA, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Juhasz T, Matta C, Katona E, Somogyi C, Takacs R, Gergely P, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target. PLoS One. 2014;9:e91541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Juhasz T, Matta C, Katona E, Somogyi C, Takacs R, Hajdu T, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) signalling enhances osteogenesis in UMR-106 cell line. J Mol Neurosci. 2014;54:555–73.

    Article  CAS  PubMed  Google Scholar 

  15. Kovacs CS, Chik CL, Li B, Karpinski E, Ho AK. Pituitary adenylate cyclase-activating peptide stimulates cyclic AMP accumulation in UMR 106 osteoblast-like cells. J Endocrinol. 1996;149:287–95.

    Article  CAS  PubMed  Google Scholar 

  16. Gourlet P, Vandermeers A, Vertongen P, Rathe J, De NP, Cnudde J, et al. Development of high affinity selective VIP1 receptor agonists. Peptides. 1997;18:1539–45.

    Article  CAS  PubMed  Google Scholar 

  17. Dohi K, Mizushima H, Nakajo S, Ohtaki H, Matsunaga S, Aruga T, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regul Pept. 2002;109:83–8.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, Yanagihara N, et al. Pituitary adenylate cyclase-activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells. J Neurochem. 1998;70:1652–61.

    Article  CAS  PubMed  Google Scholar 

  19. Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, et al. Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett. 2012;523:93–8.

    Article  CAS  PubMed  Google Scholar 

  20. Schuhmann K, Romanin C, Baumgartner W, Groschner K. Intracellular Ca2+ inhibits smooth muscle L-type Ca2+ channels by activation of protein phosphatase type 2B and by direct interaction with the channel. J Gen Physiol. 1997;110:503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu R, Cui Z, Li M, Yang Y, Zhong J. Dimer-dependent intrinsic/basal activity of the class B G protein-coupled receptor PAC1 promotes cellular anti-apoptotic activity through Wnt/beta-catenin pathways that are associated with dimer endocytosis. PLoS One. 2014;9:e113913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV. Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-beta1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol. 1999;155:1893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pavelock KA, Girard BM, Schutz KC, Braas KM, May V. Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem. 2007;100:603–16.

    Article  CAS  PubMed  Google Scholar 

  24. Niewiadomski P, Zhujiang A, Youssef M, Waschek JA. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal. 2013;25:2222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu Q, Tong B, Luo Y, Sha L, Chou G, Wang Z, et al. Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-kappaB/Notch1 pathway. PLoS One. 2013;8:e81220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Botz B, Bolcskei K, Kereskai L, Kovacs M, Nemeth T, Szigeti K, et al. Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the serum-transfer arthritis model. Arthritis Rheumatol. 2014;66:2739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fabian E, Reglodi D, Mester L, Szabo A, Szabadfi K, Tamas A, et al. Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci. 2012;48:493–500.

    Article  CAS  PubMed  Google Scholar 

  28. Heimesaat MM, Dunay IR, Schulze S, Fischer A, Grundmann U, Alutis M, et al. Pituitary adenylate cyclase-activating polypeptide ameliorates experimental acute ileitis and extra-intestinal sequelae. PLoS One. 2014;9:e108389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rozzi SJ, Borelli G, Ryan K, Steiner JP, Reglodi D, Mocchetti I, et al. PACAP27 is protective against tat-induced neurotoxicity. J Mol Neurosci. 2014;54:485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97:33–44.

    Article  CAS  PubMed  Google Scholar 

  31. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 2000;19:389–94.

    Article  PubMed  Google Scholar 

  32. Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev. 2014;28:127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piera-Velazquez S, Hawkins DF, Whitecavage MK, Colter DC, Stokes DG, Jimenez SA. Regulation of the human SOX9 promoter by Sp1 and CREB. Exp Cell Res. 2007;313:1069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juhasz T, Matta C, Somogyi C, Katona E, Takacs R, Soha RF, et al. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal. 2014;26:468–82.

    Article  CAS  PubMed  Google Scholar 

  35. Zakany R, Szucs K, Bako E, Felszeghy S, Czifra G, Biro T, et al. Protein phosphatase 2A is involved in the regulation of protein kinase A signaling pathway during in vitro chondrogenesis. Exp Cell Res. 2002;275:1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao L, Li G, Zhou GQ. SOX9 directly binds CREB as a novel synergism with the PKA pathway in BMP-2-induced osteochondrogenic differentiation. J Bone Miner Res. 2009;24:826–36.

    Article  CAS  PubMed  Google Scholar 

  37. Juhasz T, Matta C, Mészár Z, Nagy G, Szijgyarto Z, Molnar Z, et al. Optimalized transient transfection of chondrogenic primary cell cultures. CEJB. 2010;5:572–84.

    CAS  Google Scholar 

  38. Zakany R, Bako E, Felszeghy S, Hollo K, Balazs M, Bardos H, et al. Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures. Anat Embryol (Berl). 2001;203:23–34.

    Article  CAS  Google Scholar 

  39. Zakany R, Szijgyarto Z, Matta C, Juhasz T, Csortos C, Szucs K, et al. Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways. Exp Cell Res. 2005;305:190–9.

    Article  CAS  PubMed  Google Scholar 

  40. Matta C, Fodor J, Szijgyarto Z, Juhasz T, Gergely P, Csernoch L, et al. Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium. 2008;44:310–23.

    Article  CAS  PubMed  Google Scholar 

  41. Fodor J, Matta C, Olah T, Juhasz T, Takacs R, Toth A, et al. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium. 2013;54:1–16.

    Article  CAS  PubMed  Google Scholar 

  42. Somogyi CS, Matta C, Foldvari Z, Juhasz T, Katona E, Takacs AR, et al. Polymodal transient receptor potential vanilloid (TRPV) ion channels in chondrogenic cells. Int J Mol Sci. 2015;16:18412–38.

    Article  CAS  PubMed  Google Scholar 

  43. Yoo YM, Kwag JH, Kim KH, Kim CH. Effects of neuropeptides and mechanical loading on bone cell resorption in vitro. Int J Mol Sci. 2014;15:5874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10:728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konttinen YT, Tiainen VM, Gomez-Barrena E, Hukkanen M, Salo J. Innervation of the joint and role of neuropeptides. Ann N Y Acad Sci. 2006;1069:149–54.

    Article  PubMed  Google Scholar 

  46. Strange-Vognsen HH, Arnbjerg J, Hannibal J. Immunocytochemical demonstration of pituitary adenylate cyclase activating polypeptide (PACAP) in the porcine epiphyseal cartilage canals. Neuropeptides. 1997;31:137–41.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem. 2007;20:665–78.

    Article  CAS  PubMed  Google Scholar 

  48. Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, et al. Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue. J Orthop Res. 2009;27:1216–25.

    Article  PubMed  Google Scholar 

  49. Rahman S, Dobson PR, Bunning RA, Russell RG, Brown BL. The regulation of connective tissue metabolism by vasoactive intestinal polypeptide. Regul Pept. 1992;37:111–21.

    Article  CAS  PubMed  Google Scholar 

  50. Lee HW, Hahm SH, Hsu CM, Eiden LE. Pituitary adenylate cyclase-activating polypeptide regulation of vasoactive intestinal polypeptide transcription requires Ca2+ influx and activation of the serine/threonine phosphatase calcineurin. J Neurochem. 1999;73:1769–72.

    Article  CAS  PubMed  Google Scholar 

  51. Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Baba A, et al. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci. 2012;6:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, Tomimoto S, et al. Defects in reproductive functions in PACAP-deficient female mice. Regul Pept. 2002;109:45–8.

    Article  CAS  PubMed  Google Scholar 

  53. Barberi M, Di Paolo V, Latini S, Guglielmo MC, Cecconi S, Canipari R. Expression and functional activity of PACAP and its receptors on cumulus cells: effects on oocyte maturation. Mol Cell Endocrinol. 2013;375:79–88.

    Article  CAS  PubMed  Google Scholar 

  54. Brubel R, Kiss P, Vincze A, Varga A, Varnagy A, Bodis J, et al. Effects of pituitary adenylate cyclase activating polypeptide on human sperm motility. J Mol Neurosci. 2012;48:623–30.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Pizzute T, Pei M. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res. 2014;358:633–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Serrano MJ, So S, Hinton RJ. Roles of notch signalling in mandibular condylar cartilage. Arch Oral Biol. 2014;59:735–40.

    Article  CAS  PubMed  Google Scholar 

  57. Sassi N, Gadgadi N, Laadhar L, Allouche M, Mourali S, Zandieh-Doulabi B, et al. Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis. J Recept Signal Transduct Res. 2014;34:48–57.

    Article  CAS  PubMed  Google Scholar 

  58. Sangphech N, Osborne BA, Palaga T. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19). Immunobiology. 2014;219:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwon HJ. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation. Cell Biochem Funct. 2013;31:75–81.

    Article  CAS  PubMed  Google Scholar 

  60. Waschek JA, Cicco-Bloom E, Nicot A, Lelievre V. Hedgehog signaling: new targets for GPCRs coupled to cAMP and protein kinase A. Ann N Y Acad Sci. 2006;1070:120–8.

    Article  CAS  PubMed  Google Scholar 

  61. Sanchez A, Chiriva-Internati M, Grammas P. Transduction of PACAP38 protects primary cortical neurons from neurotoxic injury. Neurosci Lett. 2008;448:52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Banki E, Kovacs K, Nagy D, Juhasz T, Degrell P, Csanaky K, et al. Molecular mechanisms underlying the nephroprotective effects of PACAP in diabetes. J Mol Neurosci. 2014;54:300–9.

    Article  CAS  PubMed  Google Scholar 

  63. Reglodi D, Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, et al. PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci. 2012;48:482–92.

    Article  CAS  PubMed  Google Scholar 

  64. Hernanz A, Medina S, de Miquel E, Martin-Mola E. Effect of calcitonin gene-related peptide, neuropeptide Y, substance P, and vasoactive intestinal peptide on interleukin-1beta, interleukin-6 and tumor necrosis factor-alpha production by peripheral whole blood cells from rheumatoid arthritis and osteoarthritis patients. Regul Pept. 2003;115:19–24.

    Article  CAS  PubMed  Google Scholar 

  65. Pulsatelli L, Dolzani P, Silvestri T, De GR, Salvarani C, Macchioni P, et al. Synovial expression of vasoactive intestinal peptide in polymyalgia rheumatica. Clin Exp Rheumatol. 2006;24:562–6.

    CAS  PubMed  Google Scholar 

  66. Dvorakova MC. Cardioprotective role of the VIP signaling system. Drug News Perspect. 2005;18:387–91.

    Article  CAS  PubMed  Google Scholar 

  67. Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des. 2011;17:962–72.

    Article  CAS  PubMed  Google Scholar 

  68. Juhasz T, Szentleleky E, Somogyi CS, Takacs R, Dobrosi N, Engler M, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) pathway is induced by mechanical load and reduces the activity of hedgehog signaling in chondrogenic micromass cell cultures. Int J Mol Sci. 2015;16:17344–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Onoue S, Ohmori Y, Endo K, Yamada S, Kimura R, Yajima T. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells. Eur J Biochem. 2004;271:1757–67.

    Article  CAS  PubMed  Google Scholar 

  70. Juarranz Y, Gutierrez-Canas I, Santiago B, Carrion M, Pablos JL, Gomariz RP. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum. 2008;58:1086–95.

    Article  CAS  PubMed  Google Scholar 

  71. Carrion M, Perez-Garcia S, Jimeno R, Juarranz Y, Gonzalez-Alvaro I, Pablos JL, et al. Inflammatory mediators alter interleukin-17 receptor, interleukin-12 and -23 expression in human osteoarthritic and rheumatoid arthritis synovial fibroblasts: immunomodulation by vasoactive intestinal peptide. Neuroimmunomodulation. 2013;20:274–84.

    Article  CAS  PubMed  Google Scholar 

  72. Mobasheri A. The future of osteoarthritis therapeutics: emerging biological therapy. Curr Rheumatol Rep. 2013;15:385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gogakos AI, Duncan Bassett JH, Williams GR. Thyroid and bone. Arch Biochem Biophys. 2010;503:129–36.

    Article  CAS  PubMed  Google Scholar 

  75. Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5:13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial bone development. Front Physiol. 2013;4:61.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yavropoulou MP, Yovos JG. The role of Notch signaling in bone development and disease. Hormones (Athens). 2014;13:24–37.

    Google Scholar 

  78. Wang L, Park P, La MF, Than K, Rahman S, Lin CY. Bone formation induced by BMP-2 in human osteosarcoma cells. Int J Oncol. 2013;43:1095–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang R, Edwards JR, Ko SY, Dong S, Liu H, Oyajobi BO, et al. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One. 2011;6:e20780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today. 2006;78:267–79.

    Article  CAS  PubMed  Google Scholar 

  81. Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational regulation of Runx2 in bone and cartilage. J Dent Res. 2009;88:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hughes-Fulford M, Li CF. The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res. 2011;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang J, Zhao L, Tian W, Liao Z, Zheng H, Wang G, et al. Correlation of WWOX, RUNX2 and VEGFA protein expression in human osteosarcoma. BMC Med Genomics. 2013;6:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide. J Musculoskelet Neuronal Interact. 2008;8:154–65.

    CAS  PubMed  Google Scholar 

  85. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science. 1986;232:868–71.

    Article  CAS  PubMed  Google Scholar 

  86. Bataille C, Mauprivez C, Hay E, Baroukh B, Brun A, Chaussain C, et al. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone. 2012;50:1162–72.

    Article  CAS  PubMed  Google Scholar 

  87. Suzuki A, Kotoyori J, Oiso Y, Kozawa O. Pituitary adenylate cyclase-activating polypeptide induces cAMP production independently from vasoactive intestinal polypeptide in osteoblast-like cells. Cell Signal. 1994;6:11–6.

    Article  CAS  PubMed  Google Scholar 

  88. Onuoha GN. Circulating sensory peptide levels within 24 h of human bone fracture. Peptides. 2001;22:1107–10.

    Article  CAS  PubMed  Google Scholar 

  89. Ma W, Zhang X, Shi S, Zhang Y. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication. Neuropeptides. 2013;47:179–86.

    Article  CAS  PubMed  Google Scholar 

  90. Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology. 2001;142:339–47.

    CAS  PubMed  Google Scholar 

  91. Okura H, Sato S, Kishikawa S, Kaneto S, Nakashima T, Yoshida N, et al. Runx2-I isoform contributes to fetal bone formation even in the absence of specific N-terminal amino acids. PLoS One. 2014;9:e108294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, et al. Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res. 2004;299:128–36.

    Article  CAS  PubMed  Google Scholar 

  93. Duan Y, Wang Z, Zhang H, He Y, Fan R, Cheng Y, et al. Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod. Food Funct. 2014;5:2289–97.

    Article  CAS  PubMed  Google Scholar 

  94. Pitts RL, Wang S, Jones EA, Symes AJ. Transforming growth factor-beta and ciliary neurotrophic factor synergistically induce vasoactive intestinal peptide gene expression through the cooperation of Smad, STAT, and AP-1 sites. J Biol Chem. 2001;276:19966–73.

    Article  CAS  PubMed  Google Scholar 

  95. Persson E, Lerner UH. The neuropeptide VIP regulates the expression of osteoclastogenic factors in osteoblasts. J Cell Biochem. 2011;112:3732–41.

    Article  CAS  PubMed  Google Scholar 

  96. Li D, Jiao J, Shatos MA, Hodges RR, Dartt DA. Effect of VIP on intracellular [Ca2+], extracellular regulated kinase 1/2, and secretion in cultured rat conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2013;54:2872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mustafa T, Grimaldi M, Eiden LE. The hop cassette of the PAC1 receptor confers coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating polypeptide-evoked neurosecretion. J Biol Chem. 2007;282:8079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maeda Y, Sekiguchi F, Yamanaka R, Sugimoto R, Yamasoba D, Tomita S, et al. Mechanisms for proteinase-activated receptor 1-triggered prostaglandin E2 generation in mouse osteoblastic MC3T3-E1 cells. Biol Chem. 2015;396:153–62.

    Article  CAS  PubMed  Google Scholar 

  99. Lv B, Tang Y, Chen F, Xiao X. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tissue factor expression in monocyte in vitro and in vivo. Shock. 2009;31:185–91.

    Article  CAS  PubMed  Google Scholar 

  100. Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem. 2009;284:4897–904.

    Article  CAS  PubMed  Google Scholar 

  101. May V, Clason TA, Buttolph TR, Girard BM, Parsons RL. Calcium influx, but not intracellular calcium release, supports PACAP-mediated ERK activation in HEK PAC1 receptor cells. J Mol Neurosci. 2014;54:342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hayashi K, Endoh T, Shibukawa Y, Yamamoto T, Suzuki T. VIP and PACAP inhibit L-, N- and P/Q-type Ca2+ channels of parasympathetic neurons in a voltage independent manner. Bull Tokyo Dent Coll. 2002;43:31–9.

    Article  CAS  PubMed  Google Scholar 

  103. Harfi I, Sariban E. Mechanisms and modulation of pituitary adenylate cyclase-activating protein-induced calcium mobilization in human neutrophils. Ann N Y Acad Sci. 2006;1070:322–9.

    Article  CAS  PubMed  Google Scholar 

  104. Payet MD, Bilodeau L, Breault L, Fournier A, Yon L, Vaudry H, et al. PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-dependent pool in human fetal adrenal gland chromaffin cells. J Biol Chem. 2003;278:1663–70.

    Article  CAS  PubMed  Google Scholar 

  105. Akopian A, Demulder A, Ouriaghli F, Corazza F, Fondu P, Bergmann P. Effects of CGRP on human osteoclast-like cell formation: a possible connection with the bone loss in neurological disorders? Peptides. 2000;21:559–64.

    Article  CAS  PubMed  Google Scholar 

  106. Winding B, Wiltink A, Foged NT. Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts. Exp Physiol. 1997;82:871–86.

    Article  CAS  PubMed  Google Scholar 

  107. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003;88:446–54.

    Article  CAS  PubMed  Google Scholar 

  108. Park HJ, Baek K, Baek JH, Kim HR. The cooperation of CREB and NFAT is required for PTHrP-induced RANKL expression in mouse osteoblastic cells. J Cell Physiol. 2015;230:667–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mrs. Krisztina Bíró for excellent technical assistance and to Ms. Andrea Pálfi, Ms. Solveig Lind Helgadottir, Ms. Katarina Karadottir, and Mr. Vince Szegecki medical students for their skillful help during the studies and for Mathias Skafte Andersen for the graphical figures. This work was supported by grants from Akira Arimura Foundation Research Grant, the Hungarian Science Research Fund (OTKA 119759 and OTKA K 104984), PTE AOK KA Research Grant, Bolyai Scholarship, and the Hungarian Academy of Sciences (MTA “Lendület” Program) and from the New Széchenyi Plan (TÁMOP-4.2.2.A-11/1/KONV-2012-0053; The project is co-financed by the European Union and the European Social Fund). This research and T.J. was supported by Szodoray Lajos and Magyary Zoltán Funds by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program” New National Excellence Program (UNKP). This work is dedicated to the 650th anniversary of the University of Pecs. T.J. and R.Z. are supported by GOP-1.1.1-11-2012-0197 financed by the Hungarian government and the EU. This work was supported by the University of Debrecen (RH/751/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Juhasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Juhasz, T., Tamas, A., Zakany, R., Reglodi, D. (2016). Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_20

Download citation

Publish with us

Policies and ethics