Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior

  • Giuliano Gregori
  • Tae-Youl Yang
  • Alessandro Senocrate
  • Michael Grätzel
  • Joachim Maier


This chapter is focused on the relevance of the ionic transport in hybrid organic–inorganic perovskites. The occurrence of significant ionic conductivity along with electronic conductivity leads to stoichiometric polarization on current flow. Such a polarization yields a large apparent dielectric constant at low frequencies and a pronounced hysteresis behavior in i-V sweep experiments. We describe electrochemical background, precise measurements, and the impact of these phenomena for the photo-perovskites.


Space Charge Polarization Mixed Conductor Perovskite Solar Cell Chemical Diffusion Coefficient Ionic Transference Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi: 10.1021/ja809598r CrossRefGoogle Scholar
  2. 2.
    Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012). doi: 10.1038/srep00591 Google Scholar
  3. 3.
    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi: 10.1038/nature12340 CrossRefGoogle Scholar
  4. 4.
    Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi: 10.1021/ja411509g CrossRefGoogle Scholar
  5. 5.
    Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi: 10.1038/nmat4014 CrossRefGoogle Scholar
  6. 6.
    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi: 10.1038/nature12509 CrossRefGoogle Scholar
  7. 7.
    Lee, M.M., Teuscher, J., Miyasaka, T.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 643 (2012). doi: 10.1126/science.1228604
  8. 8.
    Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-Organic-Cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). doi: 10.1002/anie.201309361 CrossRefGoogle Scholar
  9. 9.
    Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The Significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). doi: 10.1002/anie.201500014 CrossRefGoogle Scholar
  10. 10.
    Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5(13), 2390–2394 (2014). doi: 10.1021/jz5011169 CrossRefGoogle Scholar
  11. 11.
    Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis. J. Phys. Chem. Lett. 5(13), 2357–2363 (2014). doi: 10.1021/jz5011187 CrossRefGoogle Scholar
  12. 12.
    Reenen, S.V., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015). doi: 10.1021/acs.jpclett.5b01645 CrossRefGoogle Scholar
  13. 13.
    Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014). doi: 10.1021/jz500113x CrossRefGoogle Scholar
  14. 14.
    Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014). doi: 10.1039/C4EE02465F CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L.M., Johnston, M.B., Lin, H., Snaith, H.J.: Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015). doi: 10.1039/C4MH00238E CrossRefGoogle Scholar
  16. 16.
    Hebb, M.H.: Electrical conductivity of silver sulfide. J. Chem. Phys. 20(1), 185–190 (1952). doi: 10.1063/1.1700165 CrossRefGoogle Scholar
  17. 17.
    Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014). doi: 10.1021/nl500390f CrossRefGoogle Scholar
  18. 18.
    Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi: 10.1021/ic401215x CrossRefGoogle Scholar
  19. 19.
    Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53(7), 935–939 (1992). doi: 10.1016/0022-3697(92)90121-S CrossRefGoogle Scholar
  20. 20.
    Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87(11), 6373–6378 (1987). doi: 10.1063/1.453467 CrossRefGoogle Scholar
  21. 21.
    Wasylishen, R.E., Knop, O., Macdonald, J.B.: Cation rotation in methylammonium lead halides. Solid State Commun. 56(7), 581–582 (1985). doi: 10.1016/0038-1098(85)90959-7 CrossRefGoogle Scholar
  22. 22.
    Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). doi: 10.1038/ncomms6784 CrossRefGoogle Scholar
  23. 23.
    Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J.: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014). doi: 10.1039/C4EE01138D CrossRefGoogle Scholar
  24. 24.
    You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi: 10.1063/1.4901510 CrossRefGoogle Scholar
  25. 25.
    Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.-P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., Sargent, E.H.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Communi. 6 (2015). doi: 10.1038/ncomms8081
  26. 26.
    Nie, W., Tsai, H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). doi: 10.1126/science.aaa0472 CrossRefGoogle Scholar
  27. 27.
    Yamada, K., Isobe, K., Okuda, T., Furukawa, Y.: Successive Phase Transitions and High Ionic Conductivity of Trichlorogermanate(II) Salts as Studied by 35Cl NQR and Powder X-Ray Diffraction. Z. Naturforsch. A J. Phys. Sci. 49(1–2), 258–266 (1994). doi: 10.1515/zna-1994-1-238 Google Scholar
  28. 28.
    Yamada, K., Isobe, K., Tsuyama, E., Okuda, T., Furukawa, Y.: Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR. Solid State Ionics 79, 152–157 (1995). doi: 10.1016/0167-2738(95)00055-B CrossRefGoogle Scholar
  29. 29.
    Yamada, K., Kuranaga, Y., Ueda, K., Goto, S.: Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Japan 71, 127-127 (1998). doi: 10.1246/bcsj.71.127 Google Scholar
  30. 30.
    Yamada, K., Matsui, T., Tsuritani, T., Okuda, T., Ichiba, S.: 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M = K, NH4, Rb, Cs, and CH3NH3). Z. Naturforsch. A 45(3–4), 307–312 (1990). doi: 10.1515/zna-1990-3-416 Google Scholar
  31. 31.
    Mizusaki, J., Arai, K., Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983). doi: 10.1016/0167-2738(83)90025-5 CrossRefGoogle Scholar
  32. 32.
    Hoshino, H., Yamazaki, M., Nakamura, Y., Shimoji, M.: Ionic conductivity of lead chloride crystals. J. Phys. Soc. Jpn. 26(6), 1422–1426 (1969). doi: 10.1143/JPSJ.26.1422 CrossRefGoogle Scholar
  33. 33.
    Hoshino, H., Yokose, S., Shimoji, M.: Ionic conductivity of lead bromide crystals. J. Solid State Chem. 7(1), 1–6 (1973). doi: 10.1016/0022-4596(73)90113-8 CrossRefGoogle Scholar
  34. 34.
    Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1), 362–373 (2013). doi: 10.1021/nn404323g CrossRefGoogle Scholar
  35. 35.
    Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014). doi: 10.1038/nmat4150 CrossRefGoogle Scholar
  36. 36.
    Zhao, Y., Liang, C., Zhang, H.M., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q., Zhang, F., He, Z.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015). doi: 10.1039/C4EE04064C CrossRefGoogle Scholar
  37. 37.
    Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). doi: 10.1021/acs.jpclett.5b02229 CrossRefGoogle Scholar
  38. 38.
    Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J.: Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. (JUNE), n/a-n/a (2015). doi: 10.1002/aenm.201500615
  39. 39.
    Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., De Bastiani, M., Bowring, A.R., Martino, N., Wojciechowski, K., McGehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015). doi: 10.1002/aenm.201500962 CrossRefGoogle Scholar
  40. 40.
    Bag, M., Renna, L.a., Adhikari, R., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137(40), 13130–13137 (2015). doi: 10.1021/jacs.5b08535 CrossRefGoogle Scholar
  41. 41.
    Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). doi: 10.1063/1.4864778 CrossRefGoogle Scholar
  42. 42.
    Buin, A., Pietsch, P., Voznyy, O., Comin, R.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). doi: 10.1021/nl502612m CrossRefGoogle Scholar
  43. 43.
    Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong Covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136(41), 14570–14575 (2014). doi: 10.1021/ja5079305 CrossRefGoogle Scholar
  44. 44.
    Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-Regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54(6), 1791–1794 (2015). doi: 10.1002/anie.201409740 CrossRefGoogle Scholar
  45. 45.
    Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014). doi: 10.1021/jz500370k CrossRefGoogle Scholar
  46. 46.
    Eames, C., Frost, J.M., Barnes, P.R.F., Oregan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 6 (2015). doi: 10.1038/ncomms8497
  47. 47.
    Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015). doi: 10.1021/jacs.5b03615 CrossRefGoogle Scholar
  48. 48.
    Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). doi: 10.1039/C5EE01265A CrossRefGoogle Scholar
  49. 49.
    Yokota, I.: On the electrical conductivity of cuprous sulfide: a diffusion theory. J. Phys. Soc. Jpn. 8(5), 595–602 (1953). doi: 10.1143/JPSJ.8.595 CrossRefGoogle Scholar
  50. 50.
    Yokota, I.: On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16(11), 2213–2223 (1961). doi: 10.1143/JPSJ.16.2213 CrossRefGoogle Scholar
  51. 51.
    Maier, J.: Solid state electrochemistry ii: devices and techniques. In: Vayenas, C., White, R.E., Gambpa-Aldeco, M.E. (eds.) Modern aspects of electrochemistry, vol. 41. pp. 1−128. Springer, New York (2007)Google Scholar
  52. 52.
    Maier, J.: Evaluation of electrochemical methods in solid state research and their generalization for defects with variable charges. Z. Phys. Chem. Neue Fol. 140, 191–215 (1984). doi: 10.1524/zpch.1984.140.2.191 CrossRefGoogle Scholar
  53. 53.
    Jamnik, J., Maier, J., Pejovnik, S.: A powerful electrical network model for the impedance of mixed conductors. Electrochim. Acta 44(24), 4139–4145 (1999). doi: 10.1016/S0013-4686(99)00128-0 CrossRefGoogle Scholar
  54. 54.
    Jamnik, J., Maier, J.: Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3(9), 1668–1678 (2001). doi: 10.1039/B100180I CrossRefGoogle Scholar
  55. 55.
    Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013). doi: 10.1063/1.4824147 CrossRefGoogle Scholar
  56. 56.
    Knop, O., Wasylishen, R.E., White, M.A., Cameron, T.S.: Oort, M.J.v.: Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68(3), 412–422 (1990). doi: 10.1139/v90-063 CrossRefGoogle Scholar
  57. 57.
    Maier, J.: Physical chemistry of ionic materials. WILEY, Chichester (2004)CrossRefGoogle Scholar
  58. 58.
    Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalton Trans. (1), 1−12 (2001). doi: 10.1039/B007070J
  59. 59.
    Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2(24), 9091–9098 (2014). doi: 10.1039/C4TA01198H CrossRefGoogle Scholar
  60. 60.
    Duan, H.S., Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T.B., Bob, B., Yang, Y.: The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). doi: 10.1039/c4cp04479g CrossRefGoogle Scholar
  61. 61.
    Samiee, M., Konduri, S., Ganapathy, B., Kottokkaran, R., Abbas, H.A., Kitahara, A., Joshi, P., Zhang, L., Noack, M., Dalal, V.: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105(15), 153502 (2014). doi: 10.1063/1.4897329 CrossRefGoogle Scholar
  62. 62.
    Maier, J.: Mass transport in the presence of internal defect reactions—concept of conservative ensembles: i, chemical diffusion in pure compounds. J. Am. Ceram. Soc. 76(5), 1212–1217 (1993). doi: 10.1111/j.1151-2916.1993.tb03743.x CrossRefGoogle Scholar
  63. 63.
    Maier, J., Amin, R.: Defect chemistry of LiFePO4. J. Electrochem. Soc. 155(4), A339–A344 (2008). doi: 10.1149/1.2839626 CrossRefGoogle Scholar
  64. 64.
    Maier, J.: Electrochemical investigation methods of ionic transport properties in solids. Solid State Phenom. 39(40), 35–60 (1994). doi: 10.4028/ CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giuliano Gregori
    • 1
  • Tae-Youl Yang
    • 1
  • Alessandro Senocrate
    • 1
    • 2
  • Michael Grätzel
    • 2
  • Joachim Maier
    • 1
  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations