Advertisement

Spatial Analysis of the Air Temperature in Greece for the Normal Period 1971–2000

  • M. Anadranistakis
  • A. Mamara
  • A. A. Argiriou
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Nowadays, there is an increased demand for high quality climatic atlases since the majority of the environmental disciplines are related to climate. Also mapping of climate variables discloses information about climate change. In this study we aim to produce high resolution monthly temperature maps for the Greek area. Max temperature data series were obtained from 52 meteorological stations of the Hellenic National Meteorological Service. Temperature data series were homogenized with a new homogenization method namely HOMER. Then the spatial distribution of the homogenized monthly max temperature series was estimated for the normal period 1971–2000, using an interpolation method developed for meteorological purposes, namely MISH. For that purpose the SRTM 90 m digital elevation data, the first 15 AURELHY principal components and some auxiliary topographical variables were used as temperature predictors. The spatial interpolation of monthly max temperature has been performed with resolution half minutes (730 m approximately at 38°N).

Keywords

Interpolation Error Interpolation Formula Basic Statistical Parameter Temperature Data Series Climatic Atlas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bénichou P, Le Breton O (1987) AURELHY: une method d’analyseutilisant le relief pour les besoins de l’hydrométéorologie. In: Deuxièmesjournéeshydrologiques de l’ORSTOM à Montpellier. ORSTOM, P1aris, pp 299–304. (Colloques et Séminaires). ISBN 2-7099-0865-4Google Scholar
  2. Cegnar T (ed) (1995) Climate of Slovenia. Hydrometeorological Institute of Slovenia, Ljubljana, 70pGoogle Scholar
  3. DWD (Deutscher Wetterdienst) (1999) Klimaatlas Bundesrepublik Deutschland: Teil 1. DWD, Offenbach, CD-ROMGoogle Scholar
  4. HOME (2011) Homepage of the COST Action ES0601. In: Advances in homogenisation methods of climate series: an integrated approach (HOME). http://www.homogenisation.org
  5. LUBW (Landesanstalt fur Umwelt. Messungen und Naturschutz Baden-Wurttemberg) (2006) Klimaatlas Baden-Wurttemberg. LUBW, Karlsruhe, CD-ROMGoogle Scholar
  6. Mariolopoulos EG, Livathinos AN (1935) Atlas Climatique de la Grece. Observatoire National d’ Athenes, AthenesGoogle Scholar
  7. Mayer B, Kylling A (2005) Technical note: The libRadtran software package for radiative transfer calculations—description and examples of use. Atmos Chem Phys 5:1855–1877CrossRefGoogle Scholar
  8. Meteo-France (1999) Direction de la Climatologie. Le climat de la France. Meteo-France, Toulouse, CD-ROMGoogle Scholar
  9. Meteo-France (2004) Direction de la Climatologie. Climate atlas of Europe. Meteo-France, Toulouse, CD ROMGoogle Scholar
  10. Szentimrey T, Bihari Z (2007) Mathematical background of the spatial interpolation methods and the software MISH (meteorological interpolation based on surface homogenized data basis). In: Proceedings from the conference on spatial interpolation in climatology and meteorology. Budapest, Hungary. 2004. COST Action 719. COST Office. pp 17–27Google Scholar
  11. Szentimrey T, Bihari Z (2014) Manual of interpolation software MISHv1.03. Hung Meteorol Serv 59Google Scholar
  12. Venema V, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P et al (2012) Benchmarking monthly homogenization algorithms. Clim Past 8:89–115CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M. Anadranistakis
    • 1
  • A. Mamara
    • 1
    • 2
  • A. A. Argiriou
    • 1
  1. 1.Hellenic National Meteorological ServiceHelleniconGreece
  2. 2.Laboratory of Atmospheric PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations