NMR of Membrane Proteins: Beyond Crystals

  • Sundaresan Rajesh
  • Michael OverduinEmail author
  • Boyan B. BonevEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 922)


Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current capabilities and future potential of NMR for membrane protein structural biology and ligand discovery.


High resolution NMR Solid state NMR Protein structure Protein interactions Membrane targets 



The authors would like to thank the Biotechnology an Biological Sciences Research Council, Campus Alberta Innovates Program, the Engineering and Physical Sciences Research Council and the Wellcome Trust for funding.


  1. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS et al (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10(5):400–406CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA et al (2013) Dynamic nuclear polarization study of inhibitor binding to the M2(18–60) proton transporter from influenza A. Biochemistry 52(16):2774–2782CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bajaj VS, Hornstein MK, Kreischer KE, Sirigiri JR, Woskov PP et al (2007) 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J Magn Reson 189(2):251–279CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35):12489–12497CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476(7358):109–113CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonev BB (2013) High-resolution solid-state NMR of lipid membranes. Adv Planar Lipid Bilayers Liposomes 17:299–329CrossRefGoogle Scholar
  7. Butterwick JA, MacKinnon R (2010) Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J Mol Biol 403(4):591–606CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321(3–4):205–215CrossRefGoogle Scholar
  9. Chen H, Ji F, Olman V, Charles KM, Liu Y et al (2011) Optimal mutation sites for PRE data collection and membrane protein structure prediction. Structure 19(4):484–495CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daviso E, Prakash S, Alia A, Gast P, Neugebauer J, Jeschke G, Matysik J (2009) The electronic structure of the primary electron donor of reaction centers of purple bacteria at atomic resolution as observed by photo-CIDNP C-13 NMR. Proc Natl Acad Sci U S A 106(52):22281–22286CrossRefPubMedPubMedCentralGoogle Scholar
  11. Diller A, Roy E, Gast P, van Gorkom HJ, de Groot HJM et al (2007) N-15 photochemically induced dynamic nuclear polarization magic-angle spinning NMR analysis of the electron donor of photosystem II. Proc Natl Acad Sci U S A 104(31):12767–12771CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dominguez C, Boelens R, Bonvin A (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737CrossRefPubMedGoogle Scholar
  13. Eichmann C, Tzitzilonis C, Bordignon E, Maslennikov I, Choe S, Riek R (2014) Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli. J Biol Chem 289(34):23482–23503CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fan Y, Shi L, Ladizhansky V, Brown L (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49(2):151–161CrossRefPubMedGoogle Scholar
  15. Fogh R, Ionides J, Ulrich E, Boucher W, Vranken W, Linge JP et al (2002) The CCPN project: an interim report on a data model for the NMR community. Nat Struct Mol Biol 9(6):416–418CrossRefGoogle Scholar
  16. Gautier A, Nietlispach D (2012) Solution NMR studies of integral polytopic α-helical membrane proteins: the structure determination of the seven-helix transmembrane receptor sensory rhodopsin II, pSRII. In: Membrane protein structure and dynamics. Humana Press, New York, pp 25–45CrossRefGoogle Scholar
  17. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helical transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6):768–774CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gulati S, Jamshad M, Knowles TJ, Morrison KA, Downing R et al (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461(2):269–278CrossRefPubMedGoogle Scholar
  19. Haeberlen U, Waugh JS (1968) Coherent averaging effects in magnetic resonance. Phys Rev 175(2):453–467CrossRefGoogle Scholar
  20. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210CrossRefPubMedPubMedCentralGoogle Scholar
  22. Horst R, Stanczak P, Serrano P, Wüthrich K (2012) Translational diffusion measurements by micro-coil NMR in aqueous solutions of the Fos-10 detergent-solubilized membrane protein OmpX. J Phys Chem B 116(23):6775–6780CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jamshad M, Charlton J, Lin Y-P, Routledge SJ, Bawa Z et al (2015) G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 35(2):e00188CrossRefPubMedPubMedCentralGoogle Scholar
  24. Janssen GJ, Daviso E, van Son M, de Groot HJM, Alia A, Matysik J (2010) Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis. Photosynth Res 104(2–3):275–282CrossRefPubMedPubMedCentralGoogle Scholar
  25. Janssen GJ, Roy E, Matysik J, Alia A (2012) N-15 photo-CIDNP MAS NMR to reveal functional heterogeneity in electron donor of different plant organisms. Appl Magn Reson 42(1):57–67CrossRefPubMedGoogle Scholar
  26. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57CrossRefPubMedGoogle Scholar
  27. Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N et al (2012) Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9(8):834–839CrossRefPubMedPubMedCentralGoogle Scholar
  28. Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485CrossRefPubMedGoogle Scholar
  29. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I (2012) Efficacy of the β(2)-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045CrossRefPubMedPubMedCentralGoogle Scholar
  30. Koppisetti RK, Fulcher YG, Jurkevich A, Prior SH, Xu J et al (2014) Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12. Nat Commun 5:5552CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kufareva I, Lenoir M, Dancea F, Sridhar P, Raush E et al (2014) Discovery of novel membrane binding structures and functions. Biochem Cell Biol 92(6):555–563CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111CrossRefPubMedGoogle Scholar
  33. Lenoir M, Grzybek M, Majkowski M, Rajesh S, Kaur J et al (2015a) Structural basis of dynamic membrane recognition by trans-Golgi network specific FAPP proteins. J Mol Biol 427(4):966–981CrossRefPubMedGoogle Scholar
  34. Lenoir M, Kufareva I, Abagyan R, Overduin M (2015b) Membrane and protein interactions of the pleckstrin homology domain superfamily. Membranes (Basel) 5(4):646–663CrossRefGoogle Scholar
  35. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232–236CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ (2013) The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135(25):9299–9302CrossRefPubMedPubMedCentralGoogle Scholar
  37. Madono M, Sawasaki T, Morishita R, Endo Y (2011) Wheat germ cell-free protein production system for post-genomic research. Nat Biotechnol 28(3):211–217Google Scholar
  38. Mao J, Do NN, Scholz F, Reggie L, Mehler M et al (2014) Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 136(50):17578–17590CrossRefPubMedGoogle Scholar
  39. Mowrey D, Cui T, Jia Y, Ma D, Makhov AM et al (2013) Open-channel structures of the human glycine receptor α1 full-length transmembrane domain. Structure 21(10):1897–1904CrossRefPubMedGoogle Scholar
  40. Ong YS, Lakatos A, Becker-Baldus J, Pos KM, Glaubitz C (2013) Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR. J Am Chem Soc 135(42):15754–15762CrossRefPubMedGoogle Scholar
  41. Opella SJ (2013) Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. Acc Chem Res 46(9):2145–2153CrossRefPubMedPubMedCentralGoogle Scholar
  42. Overduin M, Cheever ML (2001) Signaling with phosphoinositides: better than binary. Mol Interv 3:10Google Scholar
  43. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783CrossRefPubMedPubMedCentralGoogle Scholar
  44. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK et al (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed 50(50):11942–11946CrossRefGoogle Scholar
  45. Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M (2011) Dynamic nuclear polarization-enhanced solid-state NMR of a C-13-labeled signal peptide bound to lipid-reconstituted sec translocon. J Am Chem Soc 133(47):19084–19086CrossRefPubMedGoogle Scholar
  46. Renault M, Bos MP, Tommassen J, Baldus M (2011) Solid-state NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. J Am Chem Soc 133(12):4175–4177CrossRefPubMedGoogle Scholar
  47. Renault M, Pawsey S, Bos MP, Koers EJ et al (2012) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed 51(12):2998–3001CrossRefGoogle Scholar
  48. Rout AK, Strub M-P, Piszczek G, Tjandra N (2014) Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem 289(51):35111–35123CrossRefPubMedPubMedCentralGoogle Scholar
  49. Roy E, Gast P, van Gorkom H, de Groot HJ (2007) Photochemically induced dynamic nuclear polarization in the reaction center of the green sulphur bacterium chlorobium tepidum observed by (13)C MAS NMR. Biochim Biophys Acta -Bioenergetics 1767(6):610–615CrossRefGoogle Scholar
  50. Sanghera N, Correia BE, Correia JR, Ludwig C et al (2011) Deciphering the molecular details for the binding of the prion protein to main ganglioside GM1 of neuronal membranes. Chem Biol 18(11):1422–1431CrossRefPubMedGoogle Scholar
  51. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M et al (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217CrossRefPubMedGoogle Scholar
  52. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefGoogle Scholar
  53. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L et al (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46(1):33–43CrossRefPubMedGoogle Scholar
  54. Sounier R, Mas C, Steyaert J, Laeremans T, Manglik A et al (2015) Propagation of conformational changes during [mgr]-opioid receptor activation. Nature 524(7565):375–378CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE et al (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51(3):227–233CrossRefPubMedPubMedCentralGoogle Scholar
  56. Thamarath SS, Alia A, Daviso E, Mance D, Golbeck JH et al (2012) Whole cell nuclear magnetic resonance characterization of two photochemically active states of the photosynthetic reaction center in heliobacteria. Biochemistry 51(29):5763–5773CrossRefPubMedGoogle Scholar
  57. Van Horn W, Ogilvie M, Flynn P (2008) Use of reverse micelles in membrane protein structural biology. J Biomol NMR 40(3):203–211CrossRefPubMedGoogle Scholar
  58. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A et al (2009) Solution NMR structure of membrane-integral diacylglycerol kinase. Science 324(5935):1726–1729CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vinarov DA, Newman CLL, Markley JL (2006) Wheat germ cell-free platform for eukaryotic protein production. FEBS J 273(18):4160–4169CrossRefPubMedGoogle Scholar
  60. Vostrikov VV, Mote KR, Verardi R, Veglia G (2013) Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport. Structure 21(12):2119–2130CrossRefPubMedPubMedCentralGoogle Scholar
  61. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta-Biomembranes 1808(8):1957–1974 CrossRefGoogle Scholar
  62. Williamson PTF, Verhoeven A, Miller KW, Meier BH, Watts A (2007) The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 104(46):18031–18036CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid state NMR spectroscopy. J Magn Reson A 109(2):270–272CrossRefGoogle Scholar
  64. Yamamoto K, Caporini MA, Im S-C, Waskell L, Ramamoorthy A (2015) Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. Biochim Biophys Acta-Biomembranes 1848(1):342–349CrossRefGoogle Scholar
  65. Zech SG, Olejniczak E, Hajduk P, Mack J, McDermot AE (2004) Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy. J Am Chem Soc 126(43):13948–13953CrossRefPubMedGoogle Scholar
  66. Zhou Y, Cierpicki T, Jimenez RHF, Lukasik SM, Ellena JF et al (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Henry Wellcome Building for Biomolecular NMR Spectroscopy, School of Cancer SciencesUniversity of BirminghamEdgbaston, BirminghamUK
  2. 2.Faculty of Medicine & Dentistry, Department of BiochemistryUniversity of AlbertaEdmontonCanada
  3. 3.School of Life SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations