Serial Femtosecond Crystallography of Membrane Proteins

  • Lan Zhu
  • Uwe Weierstall
  • Vadim Cherezov
  • Wei LiuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 922)


Membrane proteins, including G protein-coupled receptors (GPCRs), constitute the most important drug targets. The increasing number of targets requires new structural information, which has proven tremendously challenging due to the difficulties in growing diffraction-quality crystals. Recent developments of serial femtosecond crystallography at X-ray free electron lasers combined with the use of membrane-mimetic gel-like matrix of lipidic cubic phase (LCP-SFX) for crystal growth and delivery hold significant promise to accelerate structural studies of membrane proteins. This chapter describes the development and current status of the LCP-SFX technology and elaborates its future role in structural biology of membrane proteins.


Serial femtosecond crystallography X-ray free electron laser Lipidic cubic phase LCP-SFX LCP injector Membrane proteins G protein-coupled receptors 



This work was supported in parts by the NIH grants R01 GM108635 and U54 GM094618 (V.C.), NSF BioXFEL Science and Technology center grant 1231306 (U.W. and W.L.). Further supports were provided by the Arizona State University (ASU) Biodesign Seed Grant Program and ASU-Mayo Seed Grant Program (L.Z. and W.L.). Parts of this research were carried out at the LCLS, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences, and at the GM/CA CAT of the Argonne Photon Source, Argonne National Laboratory.


  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(2):213–221CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P et al (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20(3):2706–2716CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boutet S, Williams GJ (2010) The coherent X-ray imaging (CXI) instrument at the Linac coherent light source (LCLS). New J Phys 12:035024CrossRefGoogle Scholar
  4. Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protocols 4:706–731CrossRefPubMedGoogle Scholar
  6. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:773–777CrossRefGoogle Scholar
  7. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748CrossRefPubMedPubMedCentralGoogle Scholar
  8.  Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21(4):559–566CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60(10):1795–1807CrossRefPubMedGoogle Scholar
  10. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318:618–624CrossRefPubMedGoogle Scholar
  12. DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505CrossRefGoogle Scholar
  13. Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photonics 4:641–647CrossRefGoogle Scholar
  14. Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW, Ishchenko A et al (2015) Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nat Struct Mol Biol 22:265–268CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ et al (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hart P, Boutet S, CarmI G, Dragone A, Duda B, Freytag D et al (2012) The Cornell-SLAC pixel array detector at LCLS. Ieee nuclear science symposium and medical imaging conference record. Symposium and Medical Imaging Conference (NSS/MIC), IEEE, pp 538–541Google Scholar
  18. Johansson LC, Arnlund D, White TA, Katona G, DePonte DP, Weierstall U et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9:263–265CrossRefPubMedPubMedCentralGoogle Scholar
  19. Johansson LC, Arnlund D, Katona G, White TA, Barty A, DePonte DP et al (2013) Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat Commun 4:2911CrossRefPubMedPubMedCentralGoogle Scholar
  20. Juers DH, Matthews BW (2004) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37:105–119CrossRefPubMedGoogle Scholar
  21. Kern J, Alonso-Mori R, Hellmich J, Tran R, Hattne J, Laksmono H et al (2012) Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc Natl Acad Sci U S A 109:9721–9726CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kirian RA, Wang X, Weierstall U, Schmidt KE, Spence JC, Hunter M et al (2010) Femtosecond protein nanocrystallography-data analysis methods. Opt Express 18:5713–5723CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kirian RA, White TA, Holton JM, Chapman HN, Fromme P, Barty A et al (2011) Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr Sect A 67(2):131–140CrossRefGoogle Scholar
  24. Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265CrossRefPubMedPubMedCentralGoogle Scholar
  25. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu W, Wacker D, Gati C, Han GW, James D, Wang D et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu W, Ishchenko A, Cherezov V (2014) Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9:2123–2134CrossRefPubMedPubMedCentralGoogle Scholar
  29. Meents A, Gutmann S, Wagner A, Schulze-Briese C (2010) Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc Natl Acad Sci U S A 107:1094–1099CrossRefPubMedGoogle Scholar
  30. Misquitta Y, Cherezov V, Havas F, Patterson S, Mohan JM, Wells AJ et al (2004) Rational design of lipid for membrane protein crystallization. J Struct Biol 148:169–175CrossRefPubMedGoogle Scholar
  31. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757CrossRefPubMedGoogle Scholar
  32. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol (Academic Press) 276:307–326CrossRefGoogle Scholar
  33. Perry SL, Roberts GW, Tice JD, Gennis RB, Kenis PJ (2009) Microfluidic generation of lipidic mesophases for membrane protein crystallization. Cryst Growth Des 9:2566–2569CrossRefPubMedPubMedCentralGoogle Scholar
  34. Redecke L, Nass K, DePonte DP, White TA, Rehders D, Barty A et al (2013) Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–230CrossRefPubMedGoogle Scholar
  35. Shonberg J, Kling RC, Gmeiner P, Löber S (2014) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906CrossRefPubMedGoogle Scholar
  36. Sierra RG, Laksmono H, Kern J, Tran R, Hattne J, Alonso-Mori R et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587CrossRefPubMedPubMedCentralGoogle Scholar
  37. Solem JC (1986) Imaging biological specimens with high-intensity soft x rays. J Opt Soc Am B 3:1551–1565CrossRefGoogle Scholar
  38. Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D, Frank M et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246CrossRefPubMedPubMedCentralGoogle Scholar
  39. Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster A et al (2015) Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. Elife 4:05421CrossRefGoogle Scholar
  40. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038CrossRefPubMedPubMedCentralGoogle Scholar
  42. Weierstall U, James D, Wang C, White TA, Wang D, Liu W et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309CrossRefPubMedPubMedCentralGoogle Scholar
  43. White TA, Barty A, Stellato F, Holton JM, Kirian RA, Zatsepin NA, Chapman HN (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D Biol Crystallogr 69(7):1231–1240CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefGoogle Scholar
  45. Zhang H, Unal H, Gati C, Han GW, Liu W, Zatsepin NA et al (2015) Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lan Zhu
    • 1
    • 2
  • Uwe Weierstall
    • 2
    • 3
  • Vadim Cherezov
    • 4
    • 5
  • Wei Liu
    • 1
    • 2
    Email author
  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA
  2. 2.Center for Applied Structural Discovery at the Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.Department of PhysicsArizona State UniversityTempeUSA
  4. 4.Bridge InstituteUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations