Serial Femtosecond Crystallography of Membrane Proteins
Abstract
Membrane proteins, including G protein-coupled receptors (GPCRs), constitute the most important drug targets. The increasing number of targets requires new structural information, which has proven tremendously challenging due to the difficulties in growing diffraction-quality crystals. Recent developments of serial femtosecond crystallography at X-ray free electron lasers combined with the use of membrane-mimetic gel-like matrix of lipidic cubic phase (LCP-SFX) for crystal growth and delivery hold significant promise to accelerate structural studies of membrane proteins. This chapter describes the development and current status of the LCP-SFX technology and elaborates its future role in structural biology of membrane proteins.
Keywords
Serial femtosecond crystallography X-ray free electron laser Lipidic cubic phase LCP-SFX LCP injector Membrane proteins G protein-coupled receptorsNotes
Acknowledgments
This work was supported in parts by the NIH grants R01 GM108635 and U54 GM094618 (V.C.), NSF BioXFEL Science and Technology center grant 1231306 (U.W. and W.L.). Further supports were provided by the Arizona State University (ASU) Biodesign Seed Grant Program and ASU-Mayo Seed Grant Program (L.Z. and W.L.). Parts of this research were carried out at the LCLS, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences, and at the GM/CA CAT of the Argonne Photon Source, Argonne National Laboratory.
References
- Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(2):213–221CrossRefPubMedPubMedCentralGoogle Scholar
- Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P et al (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20(3):2706–2716CrossRefPubMedPubMedCentralGoogle Scholar
- Boutet S, Williams GJ (2010) The coherent X-ray imaging (CXI) instrument at the Linac coherent light source (LCLS). New J Phys 12:035024CrossRefGoogle Scholar
- Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364CrossRefPubMedPubMedCentralGoogle Scholar
- Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protocols 4:706–731CrossRefPubMedGoogle Scholar
- Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:773–777CrossRefGoogle Scholar
- Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748CrossRefPubMedPubMedCentralGoogle Scholar
- Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21(4):559–566CrossRefPubMedPubMedCentralGoogle Scholar
- Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60(10):1795–1807CrossRefPubMedGoogle Scholar
- Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedPubMedCentralGoogle Scholar
- Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318:618–624CrossRefPubMedGoogle Scholar
- DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505CrossRefGoogle Scholar
- Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photonics 4:641–647CrossRefGoogle Scholar
- Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW, Ishchenko A et al (2015) Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nat Struct Mol Biol 22:265–268CrossRefPubMedPubMedCentralGoogle Scholar
- Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252CrossRefPubMedPubMedCentralGoogle Scholar
- Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ et al (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435CrossRefPubMedPubMedCentralGoogle Scholar
- Hart P, Boutet S, CarmI G, Dragone A, Duda B, Freytag D et al (2012) The Cornell-SLAC pixel array detector at LCLS. Ieee nuclear science symposium and medical imaging conference record. Symposium and Medical Imaging Conference (NSS/MIC), IEEE, pp 538–541Google Scholar
- Johansson LC, Arnlund D, White TA, Katona G, DePonte DP, Weierstall U et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9:263–265CrossRefPubMedPubMedCentralGoogle Scholar
- Johansson LC, Arnlund D, Katona G, White TA, Barty A, DePonte DP et al (2013) Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat Commun 4:2911CrossRefPubMedPubMedCentralGoogle Scholar
- Juers DH, Matthews BW (2004) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37:105–119CrossRefPubMedGoogle Scholar
- Kern J, Alonso-Mori R, Hellmich J, Tran R, Hattne J, Laksmono H et al (2012) Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc Natl Acad Sci U S A 109:9721–9726CrossRefPubMedPubMedCentralGoogle Scholar
- Kirian RA, Wang X, Weierstall U, Schmidt KE, Spence JC, Hunter M et al (2010) Femtosecond protein nanocrystallography-data analysis methods. Opt Express 18:5713–5723CrossRefPubMedPubMedCentralGoogle Scholar
- Kirian RA, White TA, Holton JM, Chapman HN, Fromme P, Barty A et al (2011) Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr Sect A 67(2):131–140CrossRefGoogle Scholar
- Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265CrossRefPubMedPubMedCentralGoogle Scholar
- Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535CrossRefPubMedPubMedCentralGoogle Scholar
- Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236CrossRefPubMedPubMedCentralGoogle Scholar
- Liu W, Wacker D, Gati C, Han GW, James D, Wang D et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524CrossRefPubMedPubMedCentralGoogle Scholar
- Liu W, Ishchenko A, Cherezov V (2014) Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9:2123–2134CrossRefPubMedPubMedCentralGoogle Scholar
- Meents A, Gutmann S, Wagner A, Schulze-Briese C (2010) Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc Natl Acad Sci U S A 107:1094–1099CrossRefPubMedGoogle Scholar
- Misquitta Y, Cherezov V, Havas F, Patterson S, Mohan JM, Wells AJ et al (2004) Rational design of lipid for membrane protein crystallization. J Struct Biol 148:169–175CrossRefPubMedGoogle Scholar
- Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757CrossRefPubMedGoogle Scholar
- Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol (Academic Press) 276:307–326CrossRefGoogle Scholar
- Perry SL, Roberts GW, Tice JD, Gennis RB, Kenis PJ (2009) Microfluidic generation of lipidic mesophases for membrane protein crystallization. Cryst Growth Des 9:2566–2569CrossRefPubMedPubMedCentralGoogle Scholar
- Redecke L, Nass K, DePonte DP, White TA, Rehders D, Barty A et al (2013) Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–230CrossRefPubMedGoogle Scholar
- Shonberg J, Kling RC, Gmeiner P, Löber S (2014) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906CrossRefPubMedGoogle Scholar
- Sierra RG, Laksmono H, Kern J, Tran R, Hattne J, Alonso-Mori R et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587CrossRefPubMedPubMedCentralGoogle Scholar
- Solem JC (1986) Imaging biological specimens with high-intensity soft x rays. J Opt Soc Am B 3:1551–1565CrossRefGoogle Scholar
- Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D, Frank M et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246CrossRefPubMedPubMedCentralGoogle Scholar
- Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster A et al (2015) Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. Elife 4:05421CrossRefGoogle Scholar
- Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619CrossRefPubMedPubMedCentralGoogle Scholar
- Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038CrossRefPubMedPubMedCentralGoogle Scholar
- Weierstall U, James D, Wang C, White TA, Wang D, Liu W et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309CrossRefPubMedPubMedCentralGoogle Scholar
- White TA, Barty A, Stellato F, Holton JM, Kirian RA, Zatsepin NA, Chapman HN (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D Biol Crystallogr 69(7):1231–1240CrossRefPubMedPubMedCentralGoogle Scholar
- Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefGoogle Scholar
- Zhang H, Unal H, Gati C, Han GW, Liu W, Zatsepin NA et al (2015) Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844CrossRefPubMedPubMedCentralGoogle Scholar