Advertisement

Radiation Therapy for Hepatocellular Carcinoma

  • Andrew S. KennedyEmail author
Chapter
Part of the Current Clinical Oncology book series (CCO)

Abstract

There are many factors that have over time, contributed to the limited use of ionizing radiation in treating hepatocellular carcinoma. Primarily, it is due to the fact that delivery of tumorcidal doses of radiation to a tumor will exceed tolerance of the normal surrounding liver. X-rays produce nondiscriminatory cell killing in the already diseased liver of HCC patients. In the past, radiation beams could only be delivered in the simplest of geometric arrangements, which could not avoid enough normal liver tissue from X-rays to deliver doses of radiation to control solid tumors. Only in the past 15 years technological advancements in Radiation Oncology and Diagnostic Radiology allowed for innovative approaches in both external beam and brachytherapy for treatment of liver malignancies.

Keywords

External Beam Radiation National Comprehensive Cancer Network Portal Vein Thrombosis Stereotactic Body Radiotherapy Barcelona Clinic Liver Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zeman E. Biologic basis of radiation oncology. In: Gunderson L, Tepper J, editors. Clinical radiation oncology. 1st ed. Philadelphia: Churchill Livingstone; 2000. p. 1–41.Google Scholar
  2. 2.
    Sailer SL. Three dimensional conformal radiotherapy. In: Gunderson L, Tepper J, editors. Clinical radiation oncology. Philadelphia: Churchhill Livingstone; 2000. p. 236–55.Google Scholar
  3. 3.
    Hall E. Radiobiology for the radiologist. 5th ed. Philidelphia: Lippincott Williams & Wilkins; 2000. pp. 5–16, 80–7.Google Scholar
  4. 4.
    Kennedy AS, Raleigh JA, Perez GM, et al. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys. 1997;37:897–905.CrossRefPubMedGoogle Scholar
  5. 5.
    Withers HR. Gastrointestinal cancer: radiation oncology. In: Kelsen DP, Daly JM, Levin B, Kern SE, Tepper JE, editors. Gastrointestinal oncology: principles and practice. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 83–96.Google Scholar
  6. 6.
    Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Ingold J, Reed G, Kaplan H. Radiation hepatitis. Am J Roentgenol. 1965;200–8.Google Scholar
  8. 8.
    Ogata K, Hizawa K, Yoshida M. Hepatic injury following irradiation: a morphologic study. Tukushima J Exp Med. 1963;9:240–51.Google Scholar
  9. 9.
    Austin-Seymour MM, Chen GT, Castro JR. Dose volume histogram analysis of liver radiation tolerance. J Radiat Oncol Biol Phys. 1986;12:31–5.CrossRefGoogle Scholar
  10. 10.
    Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11:240–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys. 1992;23:781–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Fajardo LF, Berthrong M, Anderson RE. Radiation pathology. New York: Oxford University Press; 2001.Google Scholar
  13. 13.
    Lawrence TS, Tesser RJ, Ten Haken RK. An application of dose volume histograms to the treatment of intrahepatic malignancies with radiation therapy. Int J Radiat Oncol Biol Phys. 1990;19:1041–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Lawrence TS, Davis MA, Maybaum J, et al. The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res. 1992;52:3698–704.PubMedGoogle Scholar
  15. 15.
    Lawrence TS, Kessler ML, Robertson JM. 3-D conformal radiation therapy in upper gastrointestinal cancer. The University of Michigan experience. Front Radiat Ther Oncol. 1996;29:221–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Lawrence TS, Kessler ML, Robertson JM. Conformal high-dose radiation plus intraarterial floxuridine for hepatic cancer. Oncology. 1993;7:51–7.PubMedGoogle Scholar
  17. 17.
    Lawrence TS, Dworzanin LM, Walker-Andrews SC, et al. Treatment of cancers involving the liver and porta hepatis with external beam irradiation and intraarterial hepatic fluorodeoxyuridine. Int J Radiat Oncol Biol Phys. 1991;20:555–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Lawrence TS, Davis MA, Stetson PL, Maybaum J, Ensminger WD. Kinetics of bromodeoxyuridine elimination from human colon cancer cells in vitro and in vivo. Cancer Res. 1994;54:2964–8.PubMedGoogle Scholar
  19. 19.
    Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2000;18:2210–8.PubMedGoogle Scholar
  20. 20.
    Dawson LA, Brock KK, Kazanjian S, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51:1410–21.CrossRefPubMedGoogle Scholar
  21. 21.
    McGinn CJ, Lawrence TS. Clinical results of the combination of radiation and fluoropyrimidines in the treatment of intrahepatic cancer. Semin Radiat Oncol. 1997;7:313–23.CrossRefPubMedGoogle Scholar
  22. 22.
    McGinn CJ, Ten Haken RK, Ensminger WD, Walker S, Wang S, Lawrence TS. Treatment of intrahepatic cancers with radiation doses based on a normal tissue complication probability model. J Clin Oncol. 1998;16:2246–52.PubMedGoogle Scholar
  23. 23.
    Ten Haken RK, Balter JM, Marsh LH, Robertson JM, Lawrence TS. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys. 1997;38:613–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Ten Haken RK, Lawrence TS, McShan DL, Tesser RJ, Fraass BA, Lichter AS. Technical considerations in the use of 3-D beam arrangements in the abdomen. Radiother Oncol. 1991;22:19–28.CrossRefPubMedGoogle Scholar
  25. 25.
    Ten Haken RK, Martel MK, Kessler ML, et al. Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys. 1993;27:689–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Mornex F, Girard N, Beziat C, et al. Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies—mature results of the French Phase II RTF-1 trial. Int J Radiat Oncol Biol Phys. 2006;66:1152–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Order S, Pajak T, Leibel S, et al. A randomized prospective trial comparing full dose chemotherapy to 131I antiferritin: an RTOG study. Int J Radiat Oncol Biol Phys. 1991;20:953–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Abrams RA, Pajak TF, Haulk TL, Flam M, Asbell SO. Survival results among patients with alpha-fetoprotein-positive, unresectable hepatocellular carcinoma: analysis of three sequential treatments of the RTOG and Johns Hopkins Oncology Center. Cancer J Sci Am. 1998;4:178–84.PubMedGoogle Scholar
  29. 29.
    Seong J, Keum KC, Han KH, et al. Combined transcatheter arterial chemoembolization and local radiotherapy of unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 1999;43:393–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Park HC, Seong J, Han KH, Chon CY, Moon YM, Suh CO. Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2002;54:150–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Han KH, Seong J, Kim JK, Ahn SH, Lee DY, Chon CY. Pilot clinical trial of localized concurrent chemoradiation therapy for locally advanced hepatocellular carcinoma with portal vein thrombosis. Cancer. 2008.Google Scholar
  32. 32.
    Aoki K, Okazaki N, Okada S, et al. Radiotherapy for hepatocellular carcinoma: clinicopathological study of seven autopsy cases. Hepatogastroenterology. 1994;41:427.Google Scholar
  33. 33.
    Guo WJ, Yu EX. Evaluation of combined therapy with chemoembolization and irradiation for large hepatocellular carcinoma. Br J Cancer. 2000;73:1091–7.Google Scholar
  34. 34.
    Guo WJ, Yu EX, Liu LM, et al. Comparison between chemoembolization combined with radiotherapy and chemoembolization alone for large hepatocellular carcinoma. World J Gastroenterol. 2003;9:1697–701.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zeng ZC, Fan J, Tang ZY, et al. A comparison of treatment combinations with and without radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus. Int J Radiat Oncol Biol Phys. 2005;61:432–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Klein J, Dawson LA. Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys. 2013;87(1):22–32.Google Scholar
  37. 37.
    Bentzen SM, et al. quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Bil Phys. 2010;76(3 Suppl):53–9.Google Scholar
  38. 38.
    Kim TH, Kim DY, Park JW, et al. Three-dimensional conformal radiotherapy of unresectable hepatocellular carcinoma patients for whom transcatheter arterial chemoembolization was ineffective or unsuitable. Am J Clinic Oncol. 2006;29:568–75.CrossRefGoogle Scholar
  39. 39.
    Liu MT, Li SH, Chu TC, et al. Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization. Jpn J Clinic Oncol. 2004;34:532–9.CrossRefGoogle Scholar
  40. 40.
    Skinner HD, Hong TS, Krishnan S. Charged-particle therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2011;21(45):278–26.Google Scholar
  41. 41.
    Skinner JD, et al. Radiation treatment outcomes for unresectable hepatoccllular carcinoma. Acta Oncol. 2011;50(8):1191–8.Google Scholar
  42. 42.
    Suit H. The gray lecture 2001: coming technical advances in radiation oncology. Int J Radiat Oncol Biol Phys. 2002;53:798–809.CrossRefPubMedGoogle Scholar
  43. 43.
    Tokuuye K, Matsui R, Sakie Y. Proton therapy for hepatocellular carcinoma. In: Proton Therapy Oncology Group XXXV Proceedings 2001:57–8.Google Scholar
  44. 44.
    Matsuzaki Y, Osuga T, Saito Y, et al. A new, effective, and safe therapeutic option using proton irradiation for hepatocellular carcinoma. Gastroenterology. 1994;106:1032–41.CrossRefPubMedGoogle Scholar
  45. 45.
    Kennedy AS, Sangro B. Nonsurgical treatment for localized hepatocellular carcinoma. Curr Oncol Rep. 2014;16:373.Google Scholar
  46. 46.
    Cardene HR, et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol. 2010;12(3):218–25.Google Scholar
  47. 47.
    Choi BO, et al. Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma preliminary analysis. BMC Cancer. 2008;8:351.Google Scholar
  48. 48.
    Tse RV, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64.Google Scholar
  49. 49.
    Herfarth KK, Debus J, Lohr F. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol. 2001;19:164–70.PubMedGoogle Scholar
  50. 50.
    Wu DH, Liu L, Chen LH. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2004;10:2184–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tse RV, Hawkins M, Lockwood G, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26:657–64.CrossRefPubMedGoogle Scholar
  52. 52.
    Ho S, Lau WY, Leung TW, Johnson PJ. Internal radiation therapy for patients with primary or metastatic hepatic cancer: a review. Cancer. 1998;83:1894–907.CrossRefPubMedGoogle Scholar
  53. 53.
    Raoul JI, Guyader D, Bretagne JF. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial injection of 131I-labeled-iodized oil versus medical support. 1994;(11).Google Scholar
  54. 54.
    Raoul JL, Guyader D, Bretagne JF, et al. Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma. Hepatology. 1997;26:1156–61.PubMedGoogle Scholar
  55. 55.
    Lau WY, Lai EC, Leung TW, Yu SC. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial-update on 5-year and 10-year survival. Ann Surg. 2008;247:43–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Kennedy AS, Nutting C, Coldwell D, et al. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J. Radiat Oncol Biol Phys. 2004;60:1552–63.Google Scholar
  57. 57.
    Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68:13–23.Google Scholar
  58. 58.
    Kennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. 2014;5(3):178–89.Google Scholar
  59. 59.
    Dancey JE, Shepherd FA, Paul K, et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41:1673–81.PubMedGoogle Scholar
  60. 60.
    Leung TW, Lau WY, Ho SK, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995;33:919–24.CrossRefPubMedGoogle Scholar
  61. 61.
    Kennedy AS, Murthy R, Sarfaraz M, et al. Outpatient hepatic artery brachytherapy for primary and secondary hepatic malignancies. Radiology. 2001;221P:468.Google Scholar
  62. 62.
    Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using Yttrrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2009;10:1053.Google Scholar
  63. 63.
    Sangro B, Carpanese L, Cianni R, et al. Survival after yttrium-90 resin microsphere radioembolization of heepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54(3):866–78.Google Scholar
  64. 64.
    Bilbao JI, et al. Biocompatibility, inflammatory response, and recannalization characteristics of nonradioactive resin microspheres: histological findings. Cardiovasc Intervent Radiol. 2009;32(4):727–36.Google Scholar
  65. 65.
    Hilgard P, et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology. 2010;52(5):1741–9.Google Scholar
  66. 66.
    Mazzaferro V, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57(5):1826–37.Google Scholar
  67. 67.
    Salem R, et al. Radioembolization for hepatocellular carcinoma using ytrrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52–64.Google Scholar
  68. 68.
    Sangro B, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54(3):868–78.Google Scholar
  69. 69.
    Van Echo DA, Kennedy AS, Coldwell D. TheraSphere (TS) at 143 Gy median dose for mixed hepatic cancers; feasibility and toxicities. Amer Soc Clin Oncol 2001;260a:1038.Google Scholar
  70. 70.
    Cheng AL, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, couble-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.Google Scholar
  71. 71.
    Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.Google Scholar
  72. 72.
    Inarrairaegui M, et al. Analysis of prognostic factors after yttrium-90 radioembolization of advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2010;77(5):1441–8.Google Scholar
  73. 73.
    Kulik LM, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology. 2008;47(1):71–81.Google Scholar
  74. 74.
    Lewandowski RJ, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9(8):1920–8.Google Scholar
  75. 75.
    Gaba RC, et al. Raadiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttirum-90 radioembolization. Ann Surg Oncol. 2009;16(6):1587–96.Google Scholar
  76. 76.
    Inarrairaaegui M, et al. Response to radioembolization with yttrium-90 resin microspheres may allow surgical treatment with curative intent and prolonged survival in previously unresectable hepatocellular carcinoma. Eur J Surg Oncol. 2012; 38(7):594–601.Google Scholar
  77. 77.
    Chow PKH, Poon DYH, Khin MW, et al. Multicenter phase II study of sequential radioembolization-sorafenib therapy for inoperable hepatocelllular carcinoma. Plos One. 2014;9(3):2–12.Google Scholar
  78. 78.
    Ricke J, Bulla K, Kolligs F, et al. Safety and toxicity of radioembolization plus sorafenib in advanced hepatocellular carcinoma: analysis of the European multicentre trial SORAMIC. Liver International. 2014:1–7.Google Scholar
  79. 79.
    Coldwell D, Kennedy AS, Van Echo DA, rt al. Feasibility of treatment of hepatic tumors utilizing embolization with yttrium-90 glass microspheres. J Vasc Interv Radiol 2001;12:S113.Google Scholar
  80. 80.
    Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68:13–23.CrossRefPubMedGoogle Scholar
  81. 81.
    Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg. 1965;162:267–78.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ariel IM, Pack GT. Treatment of inoperable cancer of the liver by intra-arterial radioactive isotopes and chemotherapy. Cancer. 1967;20:793–804.CrossRefPubMedGoogle Scholar
  83. 83.
    Simon N, Warner RRP, Baron MG, Rudavsky AZ. Intra-arterial irradiation of carcinoid tumors of the liver. Am J Roentgenol Radium Ther Nucl Med. 1968;102:552–61.CrossRefPubMedGoogle Scholar
  84. 84.
    Murthy R, Line BR, Kennedy AS. Clinical utility of Brehmstralung scan (BRM-Scan) after TheraSphere (TS). J Vasc Interv Radiol. 2002;13:S2.CrossRefGoogle Scholar
  85. 85.
    Murthy R, Kennedy AS, Tucker G. Outpatient trans arterial hepatic ‘low dose rate’ (TAH-LDR) brachytherapy for unresectable hepatocellular carcinoma. Proceedings of American Association for Cancer Research. 2002;43:485.Google Scholar
  86. 86.
    Murthy R, Kennedy AS, Coldwell D. Technical aspects of TheraSphere (TS) infusion. J Vasc Interv Radiol. 2002;13:S2.CrossRefGoogle Scholar
  87. 87.
    Kennedy AS, Van Echo DA, Murthy R. Hepatic artery brachytherapy for neuroendocrine carcinoma. Regul Pept. 2002;108:32.Google Scholar
  88. 88.
    Gray BN, Anderson JE, Burton MA, et al. Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg. 1992;62:105–10.CrossRefPubMedGoogle Scholar
  89. 89.
    Gray BN, Burton MA, Kelleher DK, Anderson J, Klemp P. Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol. 1989;42:192–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.PubMedGoogle Scholar
  91. 91.
    Blanchard RJ, Morrow IM, Sutherland JB. Treatment of liver tumors with yttrium-90 microspheres alone. Can Assoc Radiol J. 1989;40:206–10.PubMedGoogle Scholar
  92. 92.
    Blanchard RJW. Treatment of Liver tumours with yttrium-90 microspheres. Can J Surg. 1983;26:442–3.Google Scholar
  93. 93.
    Salem R, Thurston KG, Carr B. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol. 2002;13:S223–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Kennedy AS, Salem R. Comparison of two 90Yttrium microsphere agents for hepatic artery brachytherapy. Proceedings of the 14th International Congress on Anti-Cancer Treatment 2003:156.Google Scholar
  95. 95.
    Lau WY, Ho S, Leung TW, et al. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys. 1998;40:583–92.CrossRefPubMedGoogle Scholar
  96. 96.
    Lau WY, Leung WT, Ho S, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Houle S, Yip TK, Shepherd FA, et al. Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres. Radiology. 1989;172:857–60.CrossRefPubMedGoogle Scholar
  98. 98.
    Carr B, Salem R, Sheetz M. Hepatic arterial yttrium labeled glass microspheres (TheraSphere) as treatment for unresectable HCC in 36 patients. In: Proceedings of ASCO 2002.Google Scholar
  99. 99.
    Carr B, Torok F, Sheetz M. A novel and safe therapy for advanced-stage hepatocellular carcinoma (HCC): hepatic arterial 90Yttrium-labeled glass microspheres (TheraSphere). Int J Cancer 2002;Supplement 13:459.Google Scholar
  100. 100.
    a. Ackerman NB, Lien WM, Kondi ES, et al. The blood supply of experimental liver metastases. I. The distribution of hepatic artery and portal vein blood to “small” and “large” tumors. Surgery. 1969;66:1067–72.Google Scholar
  101. 101.
    Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery. 1970;68:334–40.Google Scholar
  102. 102.
    Ackerman NB, Lien WM, Silverman NA. The blood supply of experiemental liver metastases. 3. The effects of acute ligation of the hepatic artery or portal vein. Surgery. 1972;71:636–41.Google Scholar
  103. 103.
    Kennedy A, Coldwell D, Sangro B, et al. Radioembolization for the treatment of liver tumors. Am J Clin Oncol. 2012;35:91–99.Google Scholar
  104. 104.
    Willmott N, Daly JM. Microspheres and regional cancer therapy. 1st ed. Boca Raton: CRC Press, Inc.; 1994.Google Scholar
  105. 105.
    Carr B. Hepatic arterial 90Yttrium glass microspheres (TheraSphere) for unresectable hepatocellular carcinoma: Interim safety and survival data on 65 patients. Liver Transplant. 2004;10:S107–10.CrossRefGoogle Scholar
  106. 106.
    Salem R, Hunter RD. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review. Int J Radiat Oncol Biol Phys. 2006;66:S83–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Salem R, Lewandowski R, Roberts C, et al. Use of Yttrium-90 glass microspheres (TheraSphere) for the treatment of unresectable hepatocellular carcinoma in patients with portal vein thrombosis. J Vasc Interv Radiol. 2004;15:335–45.CrossRefPubMedGoogle Scholar
  108. 108.
    Salem R, Lewandowski RJ, Atassi B, et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol. 2005;16:1627–39.CrossRefPubMedGoogle Scholar
  109. 109.
    Salem R, Lewandowski RJ, Sato KT, et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol. 2007;10:12–29.CrossRefPubMedGoogle Scholar
  110. 110.
    Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.CrossRefPubMedGoogle Scholar
  111. 111.
    Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 2: special topics. J Vasc Interv Radiol. 2006;17:1425–39.CrossRefPubMedGoogle Scholar
  112. 112.
    Salem R, Thurston KG. Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 3: comprehensive literature review and future direction. J Vasc Interv Radiol. 2006;17:1571–93.CrossRefPubMedGoogle Scholar
  113. 113.
    Salem R, Thurston KG, Carr BI, Goin JE, Geschwind JF. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol. 2002;13:S223–9.CrossRefPubMedGoogle Scholar
  114. 114.
    Steel J, Baum A, Carr B. Quality of life in patients diagnosed with primary hepatocellular carcinoma: Hepatic arterial infusion of cisplatin versus 90-yttrium microspheres (Therasphere). Psycho-Oncology. 2004;13:73–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Okuda K, Ohtsuki T, Obata H, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer. 1985;56:918–28.CrossRefPubMedGoogle Scholar
  116. 116.
    Pawarode A, Tangkijvanich P, Voravud N. Outcomes of primary hepatocellular carcinoma treatment: an 8-year experience with 368 patients in Thailand. J Gastroenterol Hepatol. 2000;15:860–4.CrossRefPubMedGoogle Scholar
  117. 117.
    Sithinamsuwan P, Piratvisuth T, Tanomkiat W, Apakupakul N, Tongyoo S. Review of 336 patients with hepatocellular carcinoma at Songklanagarind Hospital. World J Gastroenterol. 2000;6:339–43.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Kennedy AS, Murthy R, Kwok Y. Hepatic artery brachytherapy for unresectable hepatocellular carcinoma: an outpatient treatment approach. In: Proceedings of the 12th International Congress on Anti-Cancer Treatment 2002;1:198–9.Google Scholar
  119. 119.
    Soulen M, Geschwind JF, Salem R. Y90 microsphere radioembolization of hepatoma: initial report of the U.S. multicenter trial. In: Proceedings of the Society of Cardiovascular and Interventional Radiology 2002:175–6.Google Scholar
  120. 120.
    Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology. 2008;47:71–81.CrossRefPubMedGoogle Scholar
  121. 121.
    Burton MA, Gray BN, Jones C, Coletti A. Intraoperative dosimetry of 90Y in liver tissue. Int J Rad Appl Instrum B. 1989;16:495–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Burton MA, Gray BN, Kelleher DK, Klemp PF. Selective internal radiation therapy: validation of intraoperative dosimetry. Radiology. 1990;175:253–5.CrossRefPubMedGoogle Scholar
  123. 123.
    Ho S, Lau WY, Leung TW, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.CrossRefPubMedGoogle Scholar
  124. 124.
    Ho S, Lau WY, Leung TW, et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol. 1997;70:823–8.CrossRefPubMedGoogle Scholar
  125. 125.
    Sarfaraz M, Kennedy AS, Cao ZJ, Li A, Yu C. Radiation dose distribution in patients treated with Y-90 microspheres for non-resectable hepatic tumors. Int J Radiat Biol Phys. 2001;51:32–3.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Radiation Oncology ResearchSarah Cannon Research InstituteNashvilleUSA
  2. 2.Department of Biomedical EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations