Advertisement

The Next Whisky Bar

  • Mike Behrisch
  • Miki Hermann
  • Stefan Mengel
  • Gernot Salzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)

Abstract

We determine the complexity of an optimization problem related to information theory. Taking a conjunctive propositional formula over some finite set of Boolean relations as input, we seek a satisfying assignment of the formula having minimal Hamming distance to a given assignment that is not required to be a model (NearestSolution, NSol). We obtain a complete classification with respect to the relations admitted in the formula. For two classes of constraint languages we present polynomial time algorithms; otherwise, we prove hardness or completeness concerning the classes APX, poly-APX, NPO, or equivalence to well-known hard optimization problems.

Keywords

Constraint Satisfaction Problem Vertex Cover Conjunctive Normal Form Dual Relation Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bailleux, O., Marquis, P.: Some computational aspects of Distance-SAT. J. Autom. Reasoning 37(4), 231–260 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Give me another one!. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 664–676. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48971-0_56 Google Scholar
  5. 5.
    Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: As close as it gets. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 222–235. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30139-6_18 Google Scholar
  6. 6.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: constraint satisfaction problems. SIGACT News, Complex. Theor. Column 43 35(1), 22–35 (2004)Google Scholar
  7. 7.
    Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96(2), 59–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (PA) (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hochbaum, D.S., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Math. Program. 62(1–3), 69–83 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Symposium on Theory of Computing (STOC 1978), San Diego, pp. 216–226 (1978)Google Scholar
  12. 12.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mike Behrisch
    • 1
  • Miki Hermann
    • 2
  • Stefan Mengel
    • 3
  • Gernot Salzer
    • 1
  1. 1.Technische Universität WienViennaAustria
  2. 2.LIX (UMR CNRS 7161), École PolytechniquePalaiseauFrance
  3. 3.CRIL (UMR CNRS 8188), Université d’ArtoisLensFrance

Personalised recommendations