Prediction of Infinite Words with Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)

Abstract

In the classic problem of sequence prediction, a predictor receives a sequence of values from an emitter and tries to guess the next value before it appears. The predictor masters the emitter if there is a point after which all of the predictor’s guesses are correct. In this paper we consider the case in which the predictor is an automaton and the emitted values are drawn from a finite set; i.e., the emitted sequence is an infinite word. We examine the predictive capabilities of finite automata, pushdown automata, stack automata (a generalization of pushdown automata), and multihead finite automata. We relate our predicting automata to purely periodic words, ultimately periodic words, and multilinear words, describing novel prediction algorithms for mastering these sequences.

References

  1. 1.
    Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS, vol. 8776, pp. 125–139. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Angluin, D., Smith, C.H.: Inductive inference: theory and methods. ACM Comput. Surv. 15(3), 237–269 (1983). http://doi.acm.org/10.1145/356914.356918 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blackwell, D.: Minimax vs. Bayes prediction. Probab. Eng. Inf. Sci. 9(1), 53–58 (1995). http://journals.cambridge.org/article_S0269964800003685 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28(2), 125–155 (1975). http://www.sciencedirect.com/science/article/pii/S0019995875902612 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Broglio, A., Liardet, P.: Predictions with automata. In: Symbolic Dynamics and its Applications. Contemporary Mathematics, vol. 135, pp. 111–124. American Mathematical Society (1992)Google Scholar
  6. 6.
    Cerruti, U., Giacobini et al., M., Liardet, P.: Prediction of binary sequences by evolving finite state machines. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 42–53. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Drucker, A.: High-confidence predictions under adversarial uncertainty. TOCT 5(3), 12 (2013). http://doi.acm.org/10.1145/2493252.2493257 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. In: Integers, Electronic Journal of Combinatorial Number Theory 11B(A6), 1–40. 2010 Proceedings of the Leiden Numeration Conference (2011)Google Scholar
  9. 9.
    Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE Trans. Inf. Theory 38, 1258–1270 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.html CrossRefMATHGoogle Scholar
  12. 12.
    Hibbard, B.: Adversarial sequence prediction. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference. pp. 399–403. IOS Press, Amsterdam, The Netherlands (2008). http://dl.acm.org/citation.cfm?id=1566174.1566212
  13. 13.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: origins and directions. Theor. Comput. Sci. 412(1–2), 83–96 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hromkovič, J.: One-way multihead deterministic finite automata. Acta Informatica 19(4), 377–384 (1983). http://dx.doi.org/10.1007/BF00290734 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Johansen, P.: Inductive inference of ultimately periodic sequences. BIT Numer. Math. 28(3), 573–580 (1988). http://dx.doi.org/10.1007/BF01941135 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leblanc, B., Lutton, E., Allouche, J.-P.: Inverse problems for finite automata: a solution based on genetic algorithms. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 157–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Legg, S.: Is there an elegant universal theory of prediction? In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 274–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    O’Connor, M.G.: An unpredictability approach to finite-state randomness. J. Comput. Syst. Sci. 37(3), 324–336 (1988). http://dx.doi.org/10.1016/0022-0000(88)90011-6 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sedgewick, R., Szymanski, T.G., Yao, A.C.: The complexity of finding cycles in periodic functions. SIAM J. Comput. 11(2), 376–390 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shubert, B.: Games of prediction of periodic sequences. Technical report, United States Naval Postgraduate School (1971)Google Scholar
  21. 21.
    Smith, T.: On infinite words determined by stack automata. In: FSTTCS 2013. Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 413–424. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013)Google Scholar
  22. 22.
    Solomonoff, R.: A formal theory of inductive inference. part i. Inf. Control 7(1), 1–22 (1964). http://www.sciencedirect.com/science/article/pii/S0019995864902232 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wagner, K., Wechsung, G.: Computational complexity. Mathematics and its Applications. Springer (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Northeastern UniversityBostonUSA
  2. 2.Université Paris-Est Marne-la-ValléeChamps-sur-MarneFrance

Personalised recommendations