Advertisement

Sums of Read-Once Formulas: How Many Summands Suffice?

  • Meena Mahajan
  • Anuj Tawari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)

Abstract

An arithmetic read-once formula (ROF) is a formula (circuit of fan-out 1) over \(+, \times \) where each variable labels at most one leaf. Every multilinear polynomial can be expressed as the sum of ROFs. In this work, we prove, for certain multilinear polynomials, a tight lower bound on the number of summands in such an expression.

References

  1. 1.
    Anderson, M., van Melkebeek, D., Volkovich, I.: Deterministic polynomial identity tests for multilinear bounded-read formulae. Comput. Complex. 24(4), 695–776 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bshouty, D., Bshouty, N.H.: On interpolating arithmetic read-once formulas with exponentiation. J. Comput. Syst. Sci. 56(1), 112–124 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bshouty, N.H., Cleve, R.: Interpolating arithmetic read-once formulas in parallel. SIAM J. Comput. 27(2), 401–413 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bshouty, N.H., Hancock, T.R., Hellerstein, L.: Learning boolean read-once formulas over generalized bases. J. Comput. Syst. Sci. 50(3), 521–542 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hancock, T.R., Hellerstein, L.: Learning read-once formulas over fields and extended bases. In: Warmuth, M.K., Valiant, L.G. (eds.) Proceedings of the Fourth Annual Workshop on Computational Learning Theory, COLT 1991, Santa Cruz, California, USA, 5–7 August 1991, pp. 326–336. Morgan Kaufmann (1991)Google Scholar
  6. 6.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kayal, N., Koiran, P., Pecatte, T., Saha, C.: Lower bounds for sums of powers of low degree univariates. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, Part I. LNCS, vol. 9134, pp. 810–821. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2), 1–17 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Shpilka, A., Volkovich, I.: On reconstruction and testing of read-once formulas. Theor. Comput. 10, 465–514 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. Comput. Complex. 24(3), 477–532 (2015). (combines results from papers in RANDOM 2009 and STOC 2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Volkovich, I.: Characterizing arithmetic read-once formulae. ACM Trans. Comput. Theor. 8(1), 2:1–2:19 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations