Affine Computation and Affine Automaton

  • Alejandro Díaz-CaroEmail author
  • Abuzer YakaryılmazEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9691)


We introduce a quantum-like classical computational concept, called affine computation, as a generalization of probabilistic computation. After giving the basics of affine computation, we define affine finite automata (AfA) and compare it with quantum and probabilistic finite automata (QFA and PFA, respectively) with respect to three basic language recognition modes. We show that, in the cases of bounded and unbounded error, AfAs are more powerful than QFAs and PFAs, and, in the case of nondeterministic computation, AfAs are more powerful than PFAs but equivalent to QFAs.


Quantum Finite Automata (QFAs) Probabilistic Finite Automata (PFA) Unbounded Error Language Affinity Affinity State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Marcos Villagra for his very helpful comments. We also thank the anonymous reviewers for their very helpful comments.


  1. 1.
    Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. Proc. Roy. Soc. A 461(2063), 3473–3482 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical report arXiv:1507.01988 (2015)
  3. 3.
    Belovs, A., Montoya, J.A., Yakaryılmaz, A.: Can one quantum bit separate any pair of words with zero-error? Technical report arXiv:1602.07967 (2016)
  4. 4.
    Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. Technical report arXiv:1602.04732 (2016)Google Scholar
  5. 5.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7, 311–324 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lapins, J.: On nonstochastic languages obtained as the union and intersection of stochastic languages. Avtom. Vychisl. Tekh. 4, 6–13 (1974). RussianMathSciNetGoogle Scholar
  7. 7.
    Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way general quantum finite automata. Theoret. Comput. Sci. 419, 73–91 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret. Comput. Sci. 237(1–2), 275–306 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)zbMATHGoogle Scholar
  10. 10.
    Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)CrossRefzbMATHGoogle Scholar
  11. 11.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. Scott. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 208–222. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Villagra, M., Yakaryılmaz, A.: Language recognition power and succintness of affine automata. Technical report arXiv:1602.05432 (2016)
  14. 14.
    Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and System Science. Springer, Also available at (2009). arXiv:0804.3401 Google Scholar
  15. 15.
    Yakaryılmaz, A., Say, A.C.C.: Languages recognized with unbounded error by quantum finite automata. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 356–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279(6), 873–892 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universidad Nacional de QuilmesBernalArgentina
  2. 2.National Laboratory for Scientific ComputingPetrópolisBrazil

Personalised recommendations