Semantics Driven Human-Machine Computation Framework for Linked Islamic Knowledge Engineering

  • Amna BasharatEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9678)


Formalized knowledge engineering activities including semantic annotation and linked data management tasks in specialized domains suffer from considerable knowledge acquisition bottleneck - owing to the lack of availability of experts and in-efficacy of computational approaches. Human Computation & Crowdsourcing (HC&C) methods successfully advocate leveraging the human processing power to solve problems that are still difficult to be solved computationally. Contextualized to the domain of Islamic Knowledge, my research investigates the synergistic interplay of these HC&C methods and the semantic web and will seek to devise a semantics driven human-machine computation framework for knowledge engineering in specialized and knowledge intensive domains. The overall objective is to augment the process of automated knowledge extraction and text mining methods using a hybrid approach for combining collective intelligence of the crowds with that of experts to facilitate activities in formalized knowledge engineering - thus overcoming the so-called knowledge acquisition bottleneck.


Human computation Semantic web Task profiles Crowdsourcing Islamic knowledge Quran Hadith 



I would like to acknowledge the contributions from my supervisors Dr. Khaled Rasheed and Dr. I. Budak Arpinar for their support and advice.


  1. 1.
    Simperl, E., Acosta, M., Flöck, F.: Knowledge engineering via human computation. In: Handbook of Human Computation, pp. 131–151. Springer, New York (2013)Google Scholar
  2. 2.
    Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic content creation. World Wide Web 13(1–2), 33–59 (2010)CrossRefGoogle Scholar
  3. 3.
    Sabou, M., Scharl, A., Michael, F.: Crowdsourced knowledge acquisition: Towards hybrid-genre workflows. Int. J. Semant. Web Inf. Syst. 9(3), 14–41 (2013)CrossRefGoogle Scholar
  4. 4.
    Basharat, A., Rasheed, K., Arpinar, I.B.: Towards linked open islamic knowledge using human computation and crowdsourcing. In: Proceedings of the International Conference on Islamic Applications in Computer Science And Technology (2015)Google Scholar
  5. 5.
    Sherif, M.A., Ngomo, A.C.N.: Semantic Quran - a multilingual resource for natural-language processing. Semant. Web 6(4), 339–345 (2015)CrossRefGoogle Scholar
  6. 6.
    Atwell, E., Brierley, C., Dukes, K., Sawalha, M., Sharaf, A.B.: An artificial intelligence approach to arabic and islamic content on the internet. In: Proceedings of NITS 3rd National Information Technology Symposium (2011)Google Scholar
  7. 7.
    DiFranzo, D., Hendler, J.: The semantic web and the next generation of human computation. In: Handbook of Human Computation, pp. 523–530. Springer, New York (2013)Google Scholar
  8. 8.
    Inel, O., et al.: CrowdTruth: Machine-human computation framework for harnessing disagreement in gathering annotated data. In: Mika, P., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 486–504. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    de Boer, V., Hildebrand, M., Aroyo, L., De Leenheer, P., Dijkshoorn, C., Tesfa, B., Schreiber, G.: Nichesourcing: Harnessing the power of crowds of experts. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 16–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Oosterman, J., Bozzon, A., Houben, G.J., et al.: Crowd vs. experts: nichesourcing for knowledge intensive tasks in cultural heritage. In: International WWW Conferences Steering Committee, pp. 567–568 (2014)Google Scholar
  11. 11.
    Retelny, D., Robaszkiewicz, S., To, A., Lasecki, W.S., Patel, J., Rahmati, N., Doshi, T., Valentine, M., Bernstein, M.S.: Expert crowdsourcing with flash teams. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 75–85. ACM (2014)Google Scholar
  12. 12.
    Noy, N.F., Mortensen, J., Musen, M.A., Alexander, P.R.: Mechanical turk as an ontology engineer? Using microtasks as a component of an ontology-engineering workflow. In: Proceedings of the 5th Annual ACM Web Science Conference, WebSci 2013, pp. 262–271. ACM, New York (2013)Google Scholar
  13. 13.
    Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: Crowdsourcing ontology alignment with microtasks. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 525–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Siorpaes, K., Hepp, M.: OntoGame: Weaving the Semantic Web by Online Games. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 751–766. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Niepert, M., Buckner, C., Allen, C.: Working the crowd: Design principles and early lessons from the social-semantic web. In: Proceedings of the Workshop on Web 3.0: Merging Semantic Web and Social Web at ACM Hypertext (2009)Google Scholar
  16. 16.
    Simperl, E., Acosta, M., Norton, B.: A semantically enabled architecture for crowdsourced linked data management. In: CrowdSearch, pp. 9–14. Citeseer (2012)Google Scholar
  17. 17.
    Hanika, F., Wohlgenannt, G., Sabou, M.: The uComp Protégé plugin: crowdsourcing enabled ontology engineering. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 181–196. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Adams, B., Wohlgenannt, G., Sabou, M., Hanika, F., et al.: Crowd-based ontology engineering with the ucomp protégé plugin. Semantic Web (Preprint), pp. 1–20Google Scholar
  19. 19.
    Siorpaes, K., Hepp, M.: Games with a purpose for the semantic web. IEEE Intell. Syst. 23(3), 50–60 (2008)CrossRefGoogle Scholar
  20. 20.
    Simko, J., Bielikov, M.: Semantic acquisition games, pp. 35–50 (2014)Google Scholar
  21. 21.
    Von Ahn, L., Dabbish, L.: Designing games with a purpose. Commun. ACM 51(8), 58–67 (2008)Google Scholar
  22. 22.
    Sabou, M., Scharl, A., Fols, M.: Crowdsourced knowledge acquisition: Towards hybrid-genre workflows. Int. J. Semant. Web Inf. Syst. 9(3), 14–41 (2013)CrossRefGoogle Scholar
  23. 23.
    Luz, N., Silva, N., Novais, P.: Generating human-computer micro-task workflows from domain ontologies. In: Kurosu, M. (ed.) HCI 2014, Part I. LNCS, vol. 8510, pp. 98–109. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Basharat, A., Arpinar, I.B., Dastgheib, S., Kursuncu, U., Kochut, K., Dogdu, E.: Semantically enriched task and workflow automation in crowdsourcing for linked data management. Int. J. Semant. Comput. 8(04), 415–439 (2014)CrossRefGoogle Scholar
  25. 25.
    Basharat, A., Yasdansepas, D., Rasheed, K.: Comparative study of verse similarity for multi-lingual representations of the qur’an. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 336–343 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of GeorgiaAthensUSA

Personalised recommendations