Qanary – A Methodology for Vocabulary-Driven Open Question Answering Systems

  • Andreas BothEmail author
  • Dennis Diefenbach
  • Kuldeep Singh
  • Saedeeh Shekarpour
  • Didier Cherix
  • Christoph Lange
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9678)


It is very challenging to access the knowledge expressed within (big) data sets. Question answering (QA) aims at making sense out of data via a simple-to-use interface. However, QA systems are very complex and earlier approaches are mostly singular and monolithic implementations for QA in specific domains. Therefore, it is cumbersome and inefficient to design and implement new or improved approaches, in particular as many components are not reusable.

Hence, there is a strong need for enabling best-of-breed QA systems, where the best performing components are combined, aiming at the best quality achievable in the given domain. Taking into account the high variety of functionality that might be of use within a QA system and therefore reused in new QA systems, we provide an approach driven by a core QA vocabulary that is aligned to existing, powerful ontologies provided by domain-specific communities. We achieve this by a methodology for binding existing vocabularies to our core QA vocabulary without re-creating the information provided by external components.

We thus provide a practical approach for rapidly establishing new (domain-specific) QA systems, while the core QA vocabulary is re-usable across multiple domains. To the best of our knowledge, this is the first approach to open QA systems that is agnostic to implementation details and that inherently follows the linked data principles.


Semantic web Software reusability Question answering Semantic search Ontologies Annotation model 



Parts of this work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642795, project: Answering Questions using Web Data (WDAqua). We would like to thank the anonymous peer reviewers for their constructive feedback.


  1. 1.
    Abacha, A.B., Zweigenbaum, P.: Medical question answering: translating medical questions into SPARQL queries. In: ACM IHI (2012)Google Scholar
  2. 2.
    Athenikos, S.J., Han, H.: Biomedical question answering: a survey. Comput. Methods Programs Biomed. 99(1), 1–24 (2010)CrossRefGoogle Scholar
  3. 3.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Both, A., Ngomo, A.-C.N., Usbeck, R., Lukovnikov, D., Lemke, C., Speicher, M.: A service-oriented search framework for full text, geospatial and semantic search. In: SEMANTiCS (2014)Google Scholar
  5. 5.
    Cabrio, E., Cojan, J., Aprosio, A.P., Magnini, B., Lavelli, A., Gandon, F.: QAKiS: an open domain QA system based on relational patterns. In: Proceedings of the ISWC 2012 Posters & Demonstrations Track (2012)Google Scholar
  6. 6.
    Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: an interactive way of querying linked data using natural language. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 125–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Dietterich, T.G.: Ensemble learning. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)Google Scholar
  8. 8.
    Ferrández, Ó., Spurk, C., Kouylekov, M., Dornescu, I., Ferrández, S., Negri, M., Izquierdo, R., Tomás, D., Orasan, C., Neumann, G., Magnini, B., González, J.L.V.: The QALL-ME framework: a specifiable-domain multilingual Question Answering architecture. J. Web Sem. 9(2), 137–145 (2011)CrossRefGoogle Scholar
  9. 9.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Ibrahim, Y., Yosef, M.A., Weikum, G.: Aida-social: entity linking on the social stream. In: Exploiting Semantic Annotations in Information Retrieval (2014)Google Scholar
  11. 11.
    Lopez, V., Fernández, M., Motta, E., Stieler, N.: PowerAqua: supporting users in querying and exploring the semantic web. Semant. Web 3(3), 249–265 (2011)Google Scholar
  12. 12.
    Lopez, V., Motta, E., Sabou, M., Fernandez, M.: PowerAqua: a multi-ontology based question answering system-v1. OpenKnowledge Deliverable D8.4 (2007)Google Scholar
  13. 13.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web? a survey. Semant. Web 2(2), 125–155 (2011)Google Scholar
  14. 14.
    Marx, E., Usbeck, R., Ngomo, A.-C.N., Höffner, K., Lehmann, J., Auer, S.: Towards an open question answering architecture. In: SEMANTiCS (2014)Google Scholar
  15. 15.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: I-SEMANTICS (2011)Google Scholar
  16. 16.
    Mossakowski, T., Kutz, O., Lange, C.: Three semantics for the core of the Distributed Ontology Language. In: Formal Ontology in Information Systems (2012)Google Scholar
  17. 17.
    Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational patterns with semantic types. In: EMNLP-CoNLL (2012)Google Scholar
  18. 18.
    Shekarpour, S., Marx, E., Ngomo, A.-C.N., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. Web Semant. Sci. Serv. Agents WWW 30, 39–51 (2015)CrossRefGoogle Scholar
  19. 19.
    Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven vocabulary for promoting the interoperability of question answering systems. In: Proceedings of the 10th IEEE International Conference on Semantic Computing (ICSC) (2016)Google Scholar
  20. 20.
    Singhal, A.: Introducing the knowledge graph: things, not strings. Official Google Blog, May 2012Google Scholar
  21. 21.
    Sun, H., Ma, H., Yih, W.-T., Tsai, C.-T., Liu, J., Chang, M.-W.: Open domain question answering via semantic enrichment. In: WWW (2015)Google Scholar
  22. 22.
    Uciteli, A., Goller, C., Burek, P., Siemoleit, S., Faria, B., Galanzina, H., Weiland, T., Drechsler-Hake, D., Bartussek, W., Herre, H.: Search ontology, a new approach towards semantic search. In: Workshop on Future Search Engines (2014)Google Scholar
  23. 23.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano, P.: Template-based question answering over RDF data. In: WWW (2012)Google Scholar
  24. 24.
    Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.: AGDISTIS - graph-based disambiguation of named entities using linked data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 457–471. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Both
    • 1
    Email author
  • Dennis Diefenbach
    • 2
  • Kuldeep Singh
    • 3
  • Saedeeh Shekarpour
    • 4
  • Didier Cherix
    • 5
  • Christoph Lange
    • 3
    • 4
  1. 1.Mercateo AGMunichGermany
  2. 2.Laboratoire Hubert CurienSaint-EtienneFrance
  3. 3.Fraunhofer IAISSankt AugustinGermany
  4. 4.University of BonnBonnGermany
  5. 5.FLAVIA IT-Management GmbHKasselGermany

Personalised recommendations