Bridging the Gap Between Formal Languages and Natural Languages with Zippers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9678)


The Semantic Web is founded on a number of Formal Languages (FL) whose benefits are precision, lack of ambiguity, and ability to automate reasoning tasks such as inference or query answering. This however poses the challenge of mediation between machines and users because the latter generally prefer Natural Languages (NL) for accessing and authoring knowledge. In this paper, we introduce the Open image in new window design pattern based on Abstract Syntax Trees (AST), Huet’s zippers and Montague grammars to zip together a natural language and a formal language. Unlike question answering, translation does not go from NL to FL, but as symbol  Open image in new window suggests, from ASTs (A) of an intermediate language to both NL ( Open image in new window ) and FL ( Open image in new window ). ASTs are built interactively and incrementally through a user-machine dialog where the user only sees NL, and the machine only sees FL.


Natural Language Noun Phrase Design Pattern Formal Language Question Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbott, M., Altenkirch, T., McBride, C., Ghani, N.: \(\partial \) for data: differentiating data structures. Fundamenta Informaticae 65(1), 1–28 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Chaudhri, V.K., Clark, P.E., Overholtzer, A., Spaulding, A.: Question generation from a knowledge base. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 54–65. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Clark, P., Chaw, S.Y., Barker, K., Chaudhri, V., Harrison, P., Fan, J., John, B., Porter, B., Spaulding, A., Thompson, J., Yeh, P.: Capturing and answering questions posed to a knowledge-based system. In: International Conference Knowledge Capture, pp. 63–70. ACM (2007)Google Scholar
  4. 4.
    Dowty, D.R., Wall, R.E., Peters, S.: Introduction to Montague Semantics. Reidel Publishing Company, Dordrecht (1981)Google Scholar
  5. 5.
    Ferré, S.: Expressive and scalable query-based faceted search over SPARQL endpoints. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 438–453. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Ferré, S.: SQUALL: The expressiveness of SPARQL 1.1 made available as a controlled natural language. Data Knowl. Eng. 94, 163–188 (2014)CrossRefGoogle Scholar
  7. 7.
    Ferré, S., Rudolph, S.: Advocatus diaboli – exploratory enrichment of ontologies with negative constraints. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 42–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting consistent updates of RDFS graphs. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 185–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Huet, G.: Functional pearl - the zipper. J. Funct. Program. 7(5), 549–554 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kaljurand, K., Kuhn, T.: A multilingual semantic wiki based on attempto controlled english and grammatical framework. In: Presutti, V., Hollink, L., Rudolph, S., Cimiano, P., Corcho, O. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 427–441. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query languages and interfaces to semantic web knowledge bases. J. Web Semant. 8(4), 377–393 (2010)CrossRefGoogle Scholar
  12. 12.
    Kuhn, T.: A survey and classification of controlled natural languages. Comput. Linguist. 40(1), 121–170 (2013)CrossRefGoogle Scholar
  13. 13.
    Lopez, V., Uren, V.S., Sabou, M., Motta, E.: Is question answering fit for the semantic web? a survey. Seman. Web 2(2), 125–155 (2011)Google Scholar
  14. 14.
    McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Ngomo, A.C.N., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, I don’t speak SPARQL: translating SPARQL queries into natural language. In: WWW, pp. 977–988 (2013)Google Scholar
  16. 16.
    Ranta, A.: Grammatical framework. J. Funct. Program. 14(02), 145–189 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Turner, D.: Functional programming and proofs of program correctness. In: Néel, D. (ed.) Tools and Notions for Program Construction: An Advanced Course, pp. 187–209. Cambridge University Press, Cambridge (1982)Google Scholar
  18. 18.
    Van Kleek, M., Moore, B., Karger, D., André, P., Schraefel, M.: Atomate it! end-user context-sensitive automation using heterogeneous information sources on the web. In: International Conference World Wide Web, pp. 951–960. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IRISA, Université de Rennes 1RennesFrance

Personalised recommendations