Advertisement

Rescue Echocardiography

  • Byron FergersonEmail author
  • Joshua Zimmerman
Chapter
  • 1.8k Downloads

Abstract

Current recommendations include the use of transesophageal echocardiography (TEE) for acute, persistent, unexplained hypotension. Perioperative transesophageal echocardiography is well suited to assess for the etiology of acute hemodynamic instability as it provides information on multiple aspects of cardiovascular physiology, from contractility and valvular function to volume status and intracardiac pressures. Its portable and relatively noninvasive nature allows quick diagnosis and rapid implementation of therapy in unstable patients. A rapid, qualitative assessment of the hemodynamic event, or “eyeballing”, is the cornerstone to rescue echocardiography. Rescue echocardiography is a process, not an event, where a qualitative estimation of the abnormality followed by reevaluation after the intervention is suggested. This chapter describes this process of rapid diagnosis, intervention, and reevaluation and highlights several key and common causes of perioperative hemodynamic instability.

Keywords

Rescue echocardiography Hemodynamic instability Transesophageal echocardiography Hypotension Valvular disease Ventricular dysfunction Hypovolemia Tamponade 

Supplementary material

Video 11.1

Mid-esophageal four chamber view demonstrating an acute pericardial effusion following percutaneous transvenous lead extraction (MOV 1,590 KB)

330609_1_En_11_MOESM2_ESM.mov (382 kb)
Video 11.2 Mid-esophageal four-chamber view with right atrial collapse in the setting of a pericardial effusion indicating tamponade physiology (MOV 382 KB)
Video 11.3

Mid-esophageal four-chamber view of a patient with right heart failure; note the bowing of the interatrial septum indicating high right atrial pressure (MOV 1,166 KB)

Video 11.4

Transgastric midpapillary short axis view revealing a “D” shaped interventricular septum secondary to right ventricular failure (MOV 1,111 KB)

Video 11.5

Mid-esophageal ascending aortic short axis view with slight probe rotation to the right. Thrombus noted in the right pulmonary artery (MOV 1,037 KB)

Video 11.6

Mid-esophageal four-chamber view demonstrating an example of segmental wall motion abnormalities (Septal and Apical hypokinesis) in the left ventricle from acute ischemia involving the left anterior descending coronary artery (MOV 1,347 KB)

330609_1_En_11_MOESM7_ESM.mov (16.6 mb)
Video 11.7 Comparison of normal versus poor ejection fraction using the transgastric midpapillary short axis view. Left: patient with normal systolic function. Right; patient with grossly abnormal systolic function (MOV 17,023 KB)
Video 11.8

Example of how to calculate left ventricular fractional area change. The image on the top is the transgastric short axis. The image on the bottom left is a rough estimate of the end-diastolic area. The image on the bottom right is a rough estimate of the end-systolic area. Fractional area change is then a percentage change between the two areas (MP4 1,867 KB)

330609_1_En_11_MOESM9_ESM.mov (697 kb)
Video 11.9 Mid-esophageal four-chamber view showing poor left ventricular apical function (MOV 698 KB)
330609_1_En_11_MOESM10_ESM.mov (652 kb)
Video 11.10 Midesophageal four-chamber view of a patient with left ventricular outflow tract obstruction. Note the anterior mitral leaflet contacting the septum during systole (MOV 652 KB)
330609_1_En_11_MOESM11_ESM.mov (708 kb)
Video 11.11 Transgastric midpapillary short axis view in the setting of hypovolemia. Note the small end-diastolic and end-systolic areas (MOV 709 KB)
Video 11.12

Transgastric midpapillary short axis view with evidence of low afterload (small end-systolic area and normal end-diastolic area) (MOV 1,503 KB)

References

  1. 1.
    American Society of A, Society of Cardiovascular Anesthesiologists Task Force on Transesophageal E. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology. 2010;112(5):1084–96.Google Scholar
  2. 2.
    Price S, Ilper H, Uddin S, et al. Peri-resuscitation echocardiography: training the novice practitioner. Resuscitation. 2010;81(11):1534–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Markin NW, Gmelch BS, Griffee MJ, Holmberg TJ, Morgan DE, Zimmerman JM. A review of 364 perioperative rescue echocardiograms: findings of an anesthesiologist-staffed perioperative echocardiography service. J Cardiothorac Vasc Anesth. 2015;29(1):82–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination. Anesth Analg. 2013;117(3):543–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller JP, Lambert AS, Shapiro WA, Russell IA, Schiller NB, Cahalan MK. The Adequacy of Basic Intraoperative Transesophageal Echocardiography Performed by Experienced Anesthesiologists. Anesthesia and Analgesia. 2001:1103–10.Google Scholar
  6. 6.
    Shillcutt SK, Markin NW, Montzingo CR, Brakke TR. Use of rapid “rescue” perioperative echocardiography to improve outcomes after hemodynamic instability in noncardiac surgical patients. J Cardiothorac Vasc Anesth. 2012;26(3):362–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Stout KK, Verrier ED. Acute valvular regurgitation. Circulation. 2009;119(25):3232–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Shiga T, Wajima Zi, Apfel CC, Inoue T, Ohe Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection. Arch Intern Med. 2006;166(13):1350.Google Scholar
  9. 9.
    Evangelista A, Flachskampf FA, Erbel R, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11(8):645–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Erbel R, Oelert H, Meyer J, et al. Effect of medical and surgical therapy on aortic dissection evaluated by transesophageal echocardiography. Implications for prognosis and therapy. The european cooperative study group on echocardiography. Circulation. 1993;87(5):1604–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Vilacosta I, San Román JA, Aragoncillo P, et al. Penetrating atherosclerotic aortic ulcer: documentation by transesophageal echocardiography. J Am Coll Cardiol. 1998;32(1):83–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Salem K, Mulji A, Lonn E. Echocardiographically guided pericardiocentesis—The gold standard for the management of pericardial effusion and cardiac tamponade. Can J Cardiol. 1999;15(11):1251–5.PubMedGoogle Scholar
  13. 13.
    Denault AY, Haddad F, Jacobsohn E, Deschamps A. Perioperative right ventricular dysfunction. Curr Opin Anaesthesiol. 2013;26(1):71–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Zochios V. Does β2-agonist use improve survival in critically ill patients with acute respiratory distress syndrome? In: Reducing mortality in critically ill patients. Springer Science+Business Media; 2015. pp. 103–9.Google Scholar
  15. 15.
    Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. Heart. 2008;94(11):1510–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Drake D, Gupta R, Lloyd SG, Gupta H. Right ventricular function assessment: comparison of geometric and visual method to short-axis slice summation method. Echocardiography. 2007;24(10):1013–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the american society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39, e14.Google Scholar
  19. 19.
    Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008;358(10):1037–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Visnjevac O, Pourafkari L, Nader ND. Role of perioperative monitoring in diagnosis of massive intraoperative cardiopulmonary embolism. J Cardiovasc Thorac Res. 2014;6(3):141–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Miniati M, Monti S, Pratali L, et al. Value of transthoracic echocardiography in the diagnosis of pulmonary embolism: results of a prospective study in unselected patients. Am J Med. 2001;110(7):528–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Quantification of right ventricular function in acute pulmonary embolism: relation to extent of pulmonary perfusion defects. Eur J Echocardiogr. 2008;9(5):641–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Ribeiro A, Juhlin-Dannfelt A, Brodin L-Å, Holmgren A, Jorfeldt L. Pulmonary embolism: relation between the degree of right ventricle overload and the extent of perfusion defects. Am Heart J. 1998;135(5):868–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Prognostic importance of quantitative echocardiographic evaluation in patients suspected of first non-massive pulmonary embolism. Eur J Echocardiogr. 2009;10(1):89–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Ribeiro A, Lindmarker P, Juhlin-Dannfelt A, Johnsson H, Jorfeldt L. Echocardiography Doppler in pulmonary embolism: right ventricular dysfunction as a predictor of mortality rate. Am Heart J. 1997;134(3):479–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanchez O, Trinquart L, Colombet I, et al. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review. Eur Heart J. 2008;29(12):1569–77.PubMedCrossRefGoogle Scholar
  27. 27.
    McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78(4):469–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Lodato JA, Ward RP, Lang RM. Echocardiographic predictors of pulmonary embolism in patients referred for helical CT. Echocardiography. 2008;25(6):584–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC, Dudlets P. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: echocardiographic observations during coronary angioplasty. J Am Coll Cardiol. 1985;5(2):193–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Wohlgelernter D, Cleman M, Highman HA, et al. Regional myocardial dysfunction during coronary angioplasty: evaluation by two-dimensional echocardiography and 12 lead electrocardiography. J Am Coll Cardiol. 1986;7(6):1245–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Seeberger MD, Skarvan K, Buser P, et al. Dobutamine stress echocardiography to detect inducible demand ischemia in anesthetized patients with coronary artery disease. Anesthesiology. 1998;88(5):1233–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang J, Filipovic M, Rudzitis A, et al. Transesophageal echocardiography for monitoring segmental wall motion during off-pump coronary artery bypass surgery. Anesth Analg. 2004;99(4):965–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal MJ. Sepsis-induced Cardiomyopathy. CCR. 2011;7(3):163–83.Google Scholar
  34. 34.
    Chockalingam A. Acute left ventricular dysfunction in the critically ill. Chest. 2010;138(1):198.PubMedCrossRefGoogle Scholar
  35. 35.
    Gudmundsson P, Rydberg E, Winter R, Willenheimer R. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol. 2005;101(2):209–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Shahgaldi K, Gudmundsson P, Manouras A, Brodin L-Å, Winter R. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography. Cardiovasc Ultrasound. 2009;7(1):41.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Akinboboye O, Sumner J, Gopal A, et al. Visual estimation of ejection fraction by two-dimensional echocardiography: the learning curve. Clin Cardiol. 1995;18(12):726–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Skarvan K, Lambert A, Filipovic M, Seeberger M. Reference values for left ventricular function in subjects under general anaesthesia and controlled ventilation assessed by two-dimensional transoesophageal echocardiography. Eur J Anaesthesiol. 2001;18(11):713–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Rouine-Rapp K, Ionescu P, Balea M, Foster E, Cahalan MK. Detection of intraoperative segmental wall-motion abnormalities by transesophageal echocardiography. Anesth Analg. 1996;83(6):1141–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2000;36(4):1344–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy: clinical spectrum and treatment. Circulation. 1995;92(7):1680–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Clements FM, Harpole DH, Quill T, Jones RH, McCann RL. Estimation of left ventricular volume and ejection fraction by two-dimensional transoesophageal echocardiography: comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth. 1990;64(3):331–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Ryan T, Burwash I, Lu J, et al. The agreement between ventricular volumes and ejection fraction by transesophageal echocardiography or a combined radionuclear and thermodilution technique in patients after coronary artery surgery. J Cardiothorac Vasc Anesth. 1996;10(3):323–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidlin D, Jenni R, Schmid ER. Transesophageal echocardiographic area and doppler flow velocity measurements: comparison with hemodynamic changes in coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13(2):143–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Royse CF. Ultrasound-guided haemodynamic state assessment. Best Pract Res Clin Anaesthesiol. 2009;23(3):273–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81(2):376–87.PubMedCrossRefGoogle Scholar
  47. 47.
    Greim CA, Roewer N, Apfel C, Laux G, am Esch JS. Relation of echocardiographic preload indices to stroke volume in critically ill patients with normal and low cardiac index. Intensive Care Medicine. 1997;23(4):411–6.Google Scholar
  48. 48.
    Swenson JD, Bull D, Stringham J. Subjective assessment of left ventricular preload using transesophageal echocardiography: corresponding pulmonary artery occlusion pressures. J Cardiothorac Vasc Anesth. 2001;15(5):580–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg. 2000;90(2):351.PubMedGoogle Scholar
  50. 50.
    Leung JM, Levine EH. Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology. 1994;81(5):1102–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification task force of the nomenclature and standards committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002;15(2):167–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4(5):282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Renner J, Broch O, Gruenewald M, et al. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia. 2011;66(7):582–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Feissel M. Espiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73.PubMedCrossRefGoogle Scholar
  55. 55.
    van Daele MERM, Trouwborst A, van Woerkens LCSM, Tenbrinck R, Fraser AG, Roelandt JRTC. Transesophageal echocardiographic monitoring of preoperative acute hypervolemic hemodilution. Anesthesiology. 1994;81(3):602–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Doi YL, Deanfield JE, McKenna WJ, Dargie HJ, Oakley CM, Goodwin JF. Echocardiographic differentiation of hypertensive heart disease and hypertrophic cardiomyopathy. Heart. 1980;44(4):395–400.CrossRefGoogle Scholar
  57. 57.
    Maraud L, Gin H, Roudaut R, Aubertin J, Bricaud H. Echocardiographic study of left ventricular function in type 1 diabetes mellitus: hypersensitivity of β-adrenergic stimulation. Diabetes Research and Clinical Practice. 1991;11(3):161–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Hrovatin E, Piazza R, Pavan D, et al. Dynamic left ventricular outflow tract obstruction in the setting of acute anterior myocardial infarction: a serious and potentially fatal complication? Echocardiography. 2002;19(6):449–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Haley JH, Sinak LJ, Tajik AJ, Ommen SR, Oh JK. Dynamic left ventricular outflow tract obstruction in acute coronary syndromes: an important cause of new systolic murmur and cardiogenic shock. Mayo Clinic Proceedings. 1999;74(9):901–6.PubMedCrossRefGoogle Scholar
  60. 60.
    GÖLbasi Z, Sakalli M, ÇIÇEk D, Aydogdu S. Dynamic left ventricular outflow tract obstruction in a patient with pheochromocytoma. Jpn Heart J. 1999;40(6):831–5.Google Scholar
  61. 61.
    Chandrasegaram MD, Celermajer DS, Wilson MK. Apical ballooning syndrome complicated by acute severe mitral regurgitation with left ventricular outflow obstruction–case report. J Cardiothorac Surg. 2007;2:14.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Brunetti ND, Ieva R, Rossi G, et al. Ventricular outflow tract obstruction, systolic anterior motion and acute mitral regurgitation in Tako-Tsubo syndrome. Int J Cardiol. 2008;127(3):e152–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Jebara VA, Mihaileanu S, Acar C, et al. Left ventricular outflow tract obstruction after mitral valve repair. Results of the sliding leaflet technique. Circulation. 1993;88(5 Pt 2):II30–34.Google Scholar
  64. 64.
    Aurigemma G, Battista S, Orsinelli D, Sweeney A, Pape L, Cuenoud H. Abnormal left ventricular intracavitary flow acceleration in patients undergoing aortic valve replacement for aortic stenosis. A marker for high postoperative morbidity and mortality. Circulation. 1992;86(3):926–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Auer J, Berent R, Weber T, Lamm G, Eber B. Catecholamine therapy inducing dynamic left ventricular outflow tract obstruction. Int J Cardiol. 2005;101(2):325–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Mingo S, Benedicto A, Jimenez MC, Pérez MA, Montero M. Dynamic left ventricular outflow tract obstruction secondary to catecholamine excess in a normal ventricle. Int J Cardiol. 2006;112(3):393–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of California San DiegoSan DiegoUSA
  2. 2.Department of AnesthesiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations