Manifold Learning for Hand Pose Recognition: Evaluation Framework

  • Maciej Papiez
  • Michal KawulokEmail author
  • Jakub Nalepa
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 613)


Hand pose recognition from 2D still images is an important, yet very challenging problem of data analysis and pattern recognition. Among many approaches proposed, there have been some attempts to exploit manifold learning for recovering intrinsic hand pose features from the hand appearance. Although they were reported successful in solving particular problems related with recognizing a hand pose, there is a lack of a thorough study on how well these methods discover the intrinsic hand dimensionality. In this study, we introduce an evaluation framework to assess several state-of-the-art methods for manifold learning and we report the results obtained for a set of artificial images generated from a hand model. This will help in future deployments of manifold learning to hand pose estimation, but also to other multidimensional problems common to the big data scenarios.


Hand pose estimation Gesture recognition Manifold learning 


  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  2. 2.
    Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Nat. Acad. Sci. 100(10), 5591–5596 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition, FG, pp. 296–301 (1995)Google Scholar
  4. 4.
    Ge, S.S., Yang, Y., Lee, T.H.: Hand gesture recognition and tracking based on distributed locally linear embedding. Image Vis. Comput. 26(12), 1607–1620 (2008)CrossRefGoogle Scholar
  5. 5.
    Grzejszczak, T., Gałuszka, A., Niezabitowski, M., Radlak, K.: Comparison of hand feature points detection methods. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds.) DoCEIS 2014. IFIP AICT, vol. 423, pp. 167–174. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Hachaj, T., Ogiela, M.R.: Human actions recognition on multimedia hardware using angle-based and coordinate-based features and multivariate continuous hidden markov model classifier. Multimedia Tools and Applications, pp. 1–21 (in press)Google Scholar
  7. 7.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE TPAMI 15(9), 850–863 (1993)CrossRefGoogle Scholar
  8. 8.
    Kasprowski, P.: Mining of eye movement data to discover people intentions. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 355–363. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Kawulok, M., Kawulok, J., Nalepa, J., Papiez, M.: Skin detection using spatial analysis with adaptive seed. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 2013, pp. 3720–3724, September 2013Google Scholar
  10. 10.
    Kawulok, M., Kawulok, J., Nalepa, J., Smolka, B.: Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Sig. Process. 2014(170), 1–22 (2014)Google Scholar
  11. 11.
    Kawulok, M., Smolka, B.: Competitive image colorization. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 2010, pp. 405–408 (2010)Google Scholar
  12. 12.
    Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recogn. 44(4), 929–939 (2011)CrossRefGoogle Scholar
  13. 13.
    Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005)CrossRefGoogle Scholar
  14. 14.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)zbMATHGoogle Scholar
  15. 15.
    van der Maaten, L., Postma, E.O., Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)Google Scholar
  16. 16.
    Milligan, G.W., Cooper, M.C.: A study of the comparability of external criteria for hierarchical cluster analysis. Multivar. Behav. Res. 21(4), 441–458 (1986)CrossRefGoogle Scholar
  17. 17.
    Nalepa, J., Grzejszczak, T., Kawulok, M.: Wrist localization in color images for hand gesture recognition. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 81–90. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016). CrossRefGoogle Scholar
  20. 20.
    Nurzynska, K., Smolka, B.: PCA application in classification of smiling and neutral facial displays. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 398–407. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using Kinect. In: BMVC, vol. 1(2), p. 3 (2011)Google Scholar
  22. 22.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  23. 23.
    Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)CrossRefGoogle Scholar
  24. 24.
    Szwoch, M.: On facial expressions and emotions RGB-D database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 384–394. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Tenenbaum, J.B., Silva, Vd, Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  26. 26.
    Šarić, M.: Libhand: A library for hand articulation, version 0.9 (2011)Google Scholar
  27. 27.
    Wang, Y., Luo, Z., Liu, J., Fan, X., Li, H., Wu, Y.: Real-time estimation of hand gestures based on manifold learning from monocular videos. Multimedia Tools Appl. 71(2), 555–574 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations