Architectural Challenges of Genotype-Phenotype Data Management

  • Michał Chlebiej
  • Piotr Habela
  • Andrzej Rutkowski
  • Iwona Szulc
  • Piotr Wiśniewski
  • Krzysztof Stencel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 613)

Abstract

Medical research initiatives more and more often involve processing considerable amounts of data that may evolve during the project. These data should be preserved and aggregated for the purpose of future analyses beyond the lifetime of a given research project. This paper discussed the challenges concerned with the construction of the storage management layer for genotype-phenotype data. These data were used to research neurodegeneration disorders and their therapy. We outline the functionality of data processing services. We also present a flexible data-storage structure. Finally, we discuss the choices regarding database schema management and input sanitation and processing.

References

  1. 1.
    Bidgood, W.D., Horii, S.C.: Modular extension of the ACR-NEMA DICOM standard to support new diagnostic imaging modalities and services. J. Digit. Imaging 9(2), 67–77 (1996)CrossRefGoogle Scholar
  2. 2.
    Chlebiej, M., Nowinski, K., Scislo, P., Bala, P.: Development of heart motion reconstruction framework based on the 4d echocardiographic data. Ann. UMCS, Inform. 8(2), 43–50 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Filipowicz, W., Habela, P., Kaczmarski, K., Kulbacki, M.: A generic approach to design and querying of multi-purpose human motion database. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 105–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Grzegorowski, M., Pardel, P.W., Stawicki, S., Stencel, K.: SONCA: Scalable semantic Processing of rapidly growing document stores. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases and Information Systems. AISC, vol. 185, pp. 89–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Kulbacki, M., Segen, J., Habela, P., Janiak, M., Knieć, W., Fojcik, M., Mielnik, P., Wojciechowski, K.: Collaborative tool for annotation of synovitis and assessment in ultrasound images. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 364–373. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Mazurek, M.: Applying NoSQL Databases for Operationalizing Clinical Data Mining Models. In: Kozielski, P., Stanislaw, K., Mrozek, D., Kasprowski, P., Boz, M. (eds.) (2014)Google Scholar
  7. 7.
    Sierdzinski, J., Bala, P., Rudowski, R., Grabowski, M., Karpinski, G., Kaczynski, B.: KARDIONET: Telecardiology based on GRID technology. In: Medical Informatics in a United and Healthy Europe - Proceedings of MIE 2009, The XXIInd International Congress of the European Federation for Medical Informatics, Sarajevo, Bosnia and Herzegovina, Agust 30 - September 2, 2009, pp. 463–467 (2009)Google Scholar
  8. 8.
    Żurada, A., Gielecki, J., Shane Tubbs, R., Loukas, M., Maksymowicz, W., Chlebiej, M., Cohen-Gadol, A., Zawiliski, J., Nowak, D., Michalak, M.: Detailed 3d-morphometry of the anterior communicating artery: potential clinical and neurosurgical implications. Surg. Radiol. Anat. 33(6), 531–538 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michał Chlebiej
    • 1
  • Piotr Habela
    • 2
  • Andrzej Rutkowski
    • 1
  • Iwona Szulc
    • 1
  • Piotr Wiśniewski
    • 1
  • Krzysztof Stencel
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland
  2. 2.Polish-Japanese Academy of Information TechnologyWarsawPoland

Personalised recommendations