Collective adaptive systems (CAS) consist of a large number of possibly heterogeneous entities evolving according to local interactions that may operate across multiple scales in time and space. The adaptation to changes in the environment, as well as the highly dispersed decision-making process, often leads to emergent behaviour that cannot be understood by simply analysing the objectives, properties, and dynamics of the individual entities in isolation.

As with most complex systems, modelling is a phase of crucial importance for the design of new CAS or the understanding of existing ones. Elsewhere in this volume the typical workflow of formal modelling, analysis, and evaluation of a CAS has been illustrated in detail. In this chapter we treat the problem of efficiently analysing large-scale CAS for quantitative properties. We review algorithms to automatically reduce the dimensionality of a CAS model preserving modeller-defined state variables, with focus on descriptions based on systems of ordinary differential equations. We illustrate the theory in a tutorial fashion, with running examples and a number of more substantial case studies ranging from crowd dynamics, epidemiology and biological systems.



This work was partially supported by the EU project QUANTICOL, 600708. The authors thank Luca Cardelli and Max Tschaikowski who co-authored the papers [19, 20, 21] used as background material in this chapter.


  1. 1.
    Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of probabilistic noninterference. J. Comput. Secur. 12(2), 191–245 (2004)CrossRefGoogle Scholar
  2. 2.
    Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 13(3), 246–253 (1968)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press, Amsterdam (2009)Google Scholar
  5. 5.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. Technical report, Department of Computer Science, The University of Iowa (2010). www.SMT-LIB.org
  6. 6.
    Barua, D., Hlavacek, W.S.: Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells. PLoS Comput. Biol. 9(9), e1003217 (2013)CrossRefGoogle Scholar
  7. 7.
    Berdine, J., Bjørner, N.: Computing all implied equalities via SMT-based partition refinement. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 168–183. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  9. 9.
    Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D., Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian agents. In: QAPL, pp. 16–31 (2015)Google Scholar
  10. 10.
    Bortolussi, L., Gast, N.: Scalable quantitative analysis: fluid and hybrid approximations. In: SFM (2016)Google Scholar
  11. 11.
    Bortolussi, L., Latella, D., Massink, M.: Stochastic process algebra and stability analysis of collective systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Bortolussi, L., Le Boudec, J.Y., Latella, D., Massink, M.: Revisiting the limit behaviour of “El Botellon”. Technical report (2012). http://infoscience.epfl.ch/record/179935/
  13. 13.
    van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1–3), 373–385 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Camporesi, F., Feret, J.: Formal reduction for rule-based models. Electron. Notes Theoret. Comp. Sci. 276, 29–59 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Camporesi, F., Feret, J., Koeppl, H., Petrov, T.: Combining model reductions. Electron. Notes Theoret. Comp. Sci. 265, 73–96 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)CrossRefGoogle Scholar
  18. 18.
    Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise reduction in complex biological switches. Scientific reports 6, 20214 EP (February 2016). http://dx.doi.org/10.1038/srep20214
  19. 19.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR (2015)Google Scholar
  20. 20.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: TACAS (2016, to appear)Google Scholar
  21. 21.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL (2016)Google Scholar
  22. 22.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. TCS 410(33–34), 3065–3084 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Conzelmann, H., Fey, D., Gilles, E.: Exact model reduction of combinatorial reaction networks. BMC Syst. Biol. 2(1), 78 (2008)CrossRefGoogle Scholar
  24. 24.
    Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B., Gilles, E.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinform. 7(1), 34 (2006)CrossRefGoogle Scholar
  25. 25.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS, pp. 362–381 (2010)Google Scholar
  26. 26.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 435–446. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)CrossRefGoogle Scholar
  29. 29.
    Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J. Publ. Transp. 14(4), 41–56 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Feng, C., Hillston, J.: Automatic moment-closure approximation of spatially distributed collective adaptive systems. ACM Trans. Model. Comput. Simul. (to appear)Google Scholar
  33. 33.
    Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280. Springer, Heidelberg (2014)Google Scholar
  34. 34.
    Feret, J.: Fragments-based model reduction: some case studies. Electron. Notes Theoret. Comput. Sci. 268, 77–96 (2010)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)CrossRefGoogle Scholar
  36. 36.
    Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. Theoret. Comput. Sci. 431, 137–164 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Transp. Logist. 1–31 (2014). doi: 10.1007/s13676-014-0053-5
  38. 38.
    Galpin, V.: Spatial representations and analysis techniques. In: SFM (2016)Google Scholar
  39. 39.
    Gao, S., Kong, S., Clarke, E.: Satisfiability modulo ODEs. In: FMCAD, pp. 105–112 (2013)Google Scholar
  40. 40.
    Grosu, R., Bartocci, E.: Spatio-temporal model checking. In: SFM (2016)Google Scholar
  41. 41.
    Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: PLDI, pp. 62–73 (2011)Google Scholar
  42. 42.
    Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time probabilistic processes. Log. Methods Comput. Sci. 2(1) (2006)Google Scholar
  43. 43.
    Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theoret. Comput. Sci. 411(22–24), 2260–2297 (2010)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Hillston, J.: A compositional approach to performance modelling. In: CUP (1996)Google Scholar
  45. 45.
    Hillston, J.: Fluid flow approximation of PEPA models. In: QEST, pp. 33–43, September 2005Google Scholar
  46. 46.
    Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11 (2013)Google Scholar
  47. 47.
    Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  48. 48.
    Iwasa, Y., Andreasen, V., Levin, S.: Aggregation in model ecosystems. I. Perfect aggregation. Ecol. Model. 37(3–4), 287–302 (1987)CrossRefMATHGoogle Scholar
  49. 49.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  50. 50.
    Katoen, J., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST, pp. 243–244 (2005)Google Scholar
  51. 51.
    Kermack, W.O., McKendrick, A.: Contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. Ser. A Containing Papers Math. Phys. Charact. 115(772), 700–721 (1927)CrossRefMATHGoogle Scholar
  52. 52.
    Kocieniewski, P., Faeder, J.R., Lipniacki, T.: The interplay of double phosphorylation and scaffolding in MAPK pathways. J. Theor. Biol. 295, 116–124 (2012)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. In: POPL, pp. 151–164 (2012)Google Scholar
  54. 54.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  55. 55.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: POPL, pp. 607–618 (2014)Google Scholar
  57. 57.
    Loreti, M., Hillston, J.: Modeling and analysis of collective adaptive systems with CARMA and its tools. In: SFM (2016)Google Scholar
  58. 58.
    Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  59. 59.
    Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid systems. In: EMSOFT, pp. 1–10 (2013)Google Scholar
  60. 60.
    Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 6th edn. Palgrave Macmillan, Basingstoke (2013)Google Scholar
  61. 61.
    Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  62. 62.
    Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)CrossRefGoogle Scholar
  63. 63.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate process equivalences. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 508–522. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  66. 66.
    Rowe, J.E., Gomez, R.: El Botellon: modeling the movement of crowds in a city. Complex Syst. 14, 363–370 (2003)Google Scholar
  67. 67.
    Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 686–702. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  68. 68.
    Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the spread of the 1918–19 flu in Central Canada. Bull. Math. Biol. 65(1), 1–26. http://dx.doi.org/10.1006/bulm.2002.0317
  69. 69.
    van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE Trans. Autom. Control 49(12), 2160–2172 (2004)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking. IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)CrossRefGoogle Scholar
  71. 71.
    Suderman, R., Deeds, E.J.: Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes. PLoS Comput. Biol. 9(10), e1003278 (2013)CrossRefGoogle Scholar
  72. 72.
    Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)CrossRefGoogle Scholar
  74. 74.
    Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 380–394. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  75. 75.
    Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE Trans. Autom. Control. (2015, to appear)Google Scholar
  76. 76.
    Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. J. Log. Algebraic Methods Program. 84(2), 238–258 (2015)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  78. 78.
    Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 1–53 (2013). http://dx.doi.org/10.1155/2013/897658897658

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IMT School for Advanced Studies LuccaLuccaItaly

Personalised recommendations