Spatial Logic and Spatial Model Checking for Closure Spaces

  • Vincenzo Ciancia
  • Diego Latella
  • Michele Loreti
  • Mieke Massink
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9700)

Abstract

Spatial aspects of computation are increasingly relevant in Computer Science, especially in the field of collective adaptive systems and when dealing with systems distributed in physical space. Traditional formal verification techniques are well suited to analyse the temporal evolution of concurrent systems; however, properties of space are typically not explicitly taken into account. This tutorial provides an introduction to recent work on a topology-inspired approach to formal verification of spatial properties depending upon (physical) space. A logic is presented, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. These topological definitions are lifted to the more general setting of closure spaces, also encompassing discrete, graph-based structures. The present tutorial illustrates the extension of the framework with a spatial surrounded operator, leading to the spatial logic for closure spaces SLCS, and its combination with the temporal logic CTL, leading to STLCS. The interplay of space and time permits one to define complex spatio-temporal properties. Both for the spatial and the spatio-temporal fragment efficient model-checking algorithms have been developed and their use on a number of case studies and examples is illustrated.

Notes

Acknowledgments

The authors like to thank Luca Bortolussi, Stephen Gilmore, Gianluca Grilletti, Laura Nenzi and Rytis Paškauskas who are involved in the Quanticol project and who are co-authors of the various articles on which this tutorial has been based. We like to thank Ezio Bartocci for sharing with us an earlier Matlab version of the Turing model.

References

  1. 1.
    Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Heidelberg (2007)MATHGoogle Scholar
  2. 2.
    Anderson, S., Bredche, N., Eiben, A.E., Kampis, G., van Steen, M.: Adaptive Collective Systems: Herding Black Sheep. BookSprints (2013)Google Scholar
  3. 3.
    Aydin Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of the CDC (2014)Google Scholar
  4. 4.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  5. 5.
    Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: studying emergent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate, A., Safranek, D., et al. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Switzerland (2015). doi:10.1007/978-3-319-26916-0_9 CrossRefGoogle Scholar
  6. 6.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: HSB. EPTCS, vol. 125, pp. 3–19 (2013)Google Scholar
  7. 7.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, New York (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.B., Fleury, E.: Shared bicycles in a city: a signal processing and data analysis perspective. Adv. Complex Syst. 14(3), 415–438 (2011)CrossRefGoogle Scholar
  10. 10.
    Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approximation. Inf. Comput. 242, 183–226 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013). http://www.sciencedirect.com/science/article/pii/S0166531613000023 CrossRefGoogle Scholar
  12. 12.
    Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Proceedings of the 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2000), pp. 365–377 (2000)Google Scholar
  13. 13.
    Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: On spatio-temporal model-checking of vehicular movement in transport systems - preliminary version. Technical report TR-QC-02-2016, QUANTICOL (2016)Google Scholar
  14. 14.
    Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification for collective adaptive systems: spatial model-checking of vehicle location data. In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, London, United Kingdom, 8–12 September, 2014, pp. 32–37. IEEE Computer Society (2014). http://dx.doi.org/10.1109/SASOW.2014.16
  15. 15.
    Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental spatio-temporal model checker. In: Bianculli, D., et al. (eds.) SEFM 2015 Workshops. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). doi:10.1007/978-3-662-49224-6_24. Extended version of QC-TR- 10-2014, http://milner.inf.ed.ac.uk/wiki/pages/J8N4c8/QUANTICOLTechnical Reports.html CrossRefGoogle Scholar
  16. 16.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. Technical report TR-QC-06-2014, QUANTICOL (2014). http://blog.inf.ed.ac.uk/quanticol/technical-reports/
  17. 17.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. (submitted, 2016)Google Scholar
  19. 19.
    Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal properties of bike-sharing systems. In: Beal, J., Hillston, J., Viroli, M. (eds.) Spatial and COllective PErvasive Computing Systems. Workshop at IEEE SASO 2015, MIT, Cambridge, MA, USA, 21 September, 2015, pp. 74–79. IEEE Computer Society Press, Cambridge (2015). doi:10.1109/SASOW.2015.17
  20. 20.
    Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (2001). http://books.google.de/books?id=Nmc4wEaLXFEC CrossRefGoogle Scholar
  21. 21.
    De Maio, P.: Bike-sharing: its history, impacts, models of provision, and future. J. Public Transp. 12(4), 41–56 (2009)CrossRefGoogle Scholar
  22. 22.
    De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Fishman, E., Washington, S., Haworth, N.L.: Bike share’s impact on car use: evidence from the United States, Great Britain, and Australia. In: Proceedings of the 93rd Annual Meeting of the Transportation Research Board (2014)Google Scholar
  24. 24.
    Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city through shared bicycling. In: IJCAI, pp. 1420–1426 (2009)Google Scholar
  25. 25.
    Galpin, V.: Spatial representations and analysis techniques. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 120–155. Springer, Switzerland (2016)Google Scholar
  26. 26.
    Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1–3), 111–134 (2003). http://www.sciencedirect.com/science/article/pii/S0304397502007016 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). http://dx.doi.org/10.1007/3-540-48384-5_17 Google Scholar
  28. 28.
    Grandis, M.: Directed Algebraic Topology: Models of Non-Reversible Worlds. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  29. 29.
    Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., Gros, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of the HSCC (2015)Google Scholar
  30. 30.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 1. Clarendon Press, Oxford (2002). http://opac.inria.fr/record=b1107183. autre tirage: 2008MATHGoogle Scholar
  31. 31.
    Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic = ? In: Aiello et al. [1], pp. 497–564Google Scholar
  32. 32.
    Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015)CrossRefGoogle Scholar
  33. 33.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-satisfaction in bicycle sharing systems. In: Sotelo Vazquez, M., Olaverri Monreal, C., Miller, J., Broggi, A. (eds.) 18th IEEE International Conference on Intelligent Transportation Systems, pp. 1363–1370. IEEE Computer Society Press (2015). doi:10.1109/ITSC.2015.224
  35. 35.
    Midgley, P.: Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. In: 19th Session of the Commission on Sustainable Development. CSD19/2011/BP8, United Nations (2011)Google Scholar
  36. 36.
    Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Haviv, M., Knottenbelt, W.J., Maggi, L., Miorandi, D. (eds.) 8th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2014, ICST, Bratislava, Slovakia, 9–11 December, 2014. http://dx.doi.org/10.4108/icst.valuetools.2014.258183
  37. 37.
    Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-23820-3_2 CrossRefGoogle Scholar
  38. 38.
    Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), Copenhagen, Denmark, 22–25 July 2002, pp. 55–74. IEEE Computer Society (2002). http://dx.doi.org/10.1109/LICS.2002.1029817
  39. 39.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952). doi:10.1098/rstb.1952.0012 CrossRefGoogle Scholar
  40. 40.
    van Benthem, J., Bezhanishvili, G.: Modal Logics of Space. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincenzo Ciancia
    • 1
  • Diego Latella
    • 1
  • Michele Loreti
    • 2
    • 3
  • Mieke Massink
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNRPisaItaly
  2. 2.Università di FirenzeFlorenceItaly
  3. 3.IMT Alti StudiLuccaItaly

Personalised recommendations