Sampled-Data Output-Feedback Fuzzy Controller for Nonlinear Systems Based on Polynomial Fuzzy Model-Based Control Approach

  • Hak-Keung LamEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 64)


This chapter considers a sampled-data output-feedback polynomial fuzzy model-based control system which is formed by a nonlinear plant represented by the polynomial fuzzy model and a sampled-data output-feedback polynomial fuzzy controller connected in a closed loop. SOS-based stability analysis considering the effect due to sampling and zero-order-hold activities is performed using the input-delay method. SOS-based stability conditions are obtained to determine the system stability and synthesize the controller. A simulation example is presented to demonstrate the design procedure and the results show that the sampled-data output-feedback polynomial fuzzy controller can be designed to stabilize a nonlinear system using the obtained SOS-based stability conditions.


Polynomial Fuzzy Model Fuzzy Controller Sampled-data Output Feedback Input Delay Approach Stability Analysis Results 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, T., Francis, B.A.: Input-output stability of sampled-data systems. IEEE Trans. Autom. Control 36(1), 50–58 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Monaco, S., Normand-Cyrot, D.: On Nonlinear Digital Control. Chapman & Hall, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Laila, D.A., Nešić, D., Teel, A.R.: Open and closed loop dissipation inequalities under sampling and controller emulation. Europ. J. Control 8(2), 109–125 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Laila, D.S., Nešić, D.: Changing supply rates for input-output to state stable discrete-time nonlinear systems with applications. Automatica 39(5), 821–835 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Laila, D.S., Astolfi, A.: Input-to-state stability for discrete-time time-varying systems with applications to robust stabilization of systems in power form. Automatica 41(11), 1891–1903 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nešić, D., Angeli, D.: Integral versions of ISS for sampled-data nonlinear systems via their approximate discrete-time models. IEEE Trans. Autom. Control 47(12), 2033–2037 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nešić, D., Grüne, L.: Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation. Automatica 41(7), 1143–1156 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grüne, L., Worthmann, K., Nešić, D.: Continuous-time controller redesign for digital implementation: A trajectory based approach. Automatica 44(1), 225–232 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, X., Marquez, H.J., Lin, Y.: Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model. Automatica 44(12), 3157–3167 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mirkin, L.: On the use of time-varying delay to represent sampled-and-hold circuits. In: Proceeding of the 47th IEEE Conference on Decision and Control, pp. 420–425. New Orleans, LA, USA (2007)Google Scholar
  12. 12.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: On the robust stability and stabilization of sampled-data systems: a hybrid system approach. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4873–4878. San Diego, CA, USA (2006)Google Scholar
  13. 13.
    Lee, H.J., Wan Kim, D.: Intelligent digital redesign revisited: approximate discretization and stability limitation. Fuzzy Sets Syst. 159(23), 3221–3231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, D.W., Lee, H.J.: Stability connection between sampled-data fuzzy control systems with quantization and their approximate discrete-time model. Automatica 45(6), 1518–1523 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lee, H.J., Tomizuka, M.: Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach. IEEE Trans. Fuzzy Syst. 18(2), 251–260 (2010)Google Scholar
  16. 16.
    Lee, H.J., Kim, M.H., Lee, Sy, Kim, Ty, et al.: Robust sampled-data fuzzy control of nonlinear systems with parametric uncertainties: its application to depth control of autonomous underwater vehicles. Int. J. Control Autom. Syst. 10(6), 1164–1172 (2012)CrossRefGoogle Scholar
  17. 17.
    Fridman, E., Seuret, A., Richard, J.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hu, L.S., Bai, T., Shi, P., Wu, Z.: Sampled-data control of networked linear control systems. Automatica 43(5), 903–911 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lam, H.K.: Output-feedback sampled-data polynomial controller for nonlinear systems. Automatica 47(11), 2457–2461 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lam, H.K., Leung, F.H.F.: Sampled-data fuzzy controller for time-delay nonlinear system: LMI-based and fuzzy-model-based approaches. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(3), 617–629 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gao, H., Chen, T.: Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yoneyama, J., Nishikawa, M., Katayama, H., Ichikawa, A.: Design of output feedback controllers for Takagi-Sugeno fuzzy systems. Fuzzy Sets Syst. 121(1), 127–148 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nguang, S.K., Shi, P.: H\(_\infty \) fuzzy output feedback control design for nonlinear systems: an LMI approach. IEEE Trans. Fuzzy Syst. 11(3), 331–340 (2003)CrossRefGoogle Scholar
  24. 24.
    Yang, D., Cai, K.Y.: Reliable H\(_\infty \) nonuniform sampling fuzzy control for nonlinear systems with time delay. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(6), 1606–1613 (2008)CrossRefGoogle Scholar
  25. 25.
    Lam, H.K., Chan, E.W.S.: Stability analysis of sampled-data fuzzy-model-based control systems. Int. J. Fuzzy Syst. 10(2), 129–135 (2008)MathSciNetGoogle Scholar
  26. 26.
    Lam, H.K., Seneviratne, L.D.: Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach. IEEE Trans. Circuits Syst.-I-Regul. Pap. 55(3), 883–892 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lam, H.K.: Stability analysis of sampled-data fuzzy controller for nonlinear systems based on switching T-S fuzzy model. Nonlinear Anal. Hybrid Syst. 3(4), 418–432 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lam, H.K., Seneviratne, L.D.: Tracking control of sampled-data fuzzy-model-based control systems. IET Control Theory Appl. 3(1), 56–67 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gao, H., Sun, W., Shi, P.: Robust sampled-data control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18(1), 238–245 (2010)CrossRefGoogle Scholar
  30. 30.
    Gao, H., Wu, J., Shi, P.: Robust sampled-data H\(_\infty \) control with stochastic sampling. Automatica 45(7), 1729–1736 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lien, C.H., Yu, K.W., Huang, C.T., Chou, P.Y., Chung, L.Y., Chen, J.D.: Robust H\(_\infty \) control for uncertain T-S fuzzy time-delay systems with sampled-data input and nonlinear perturbations. Nonlinear Anal. Hybrid Syst. 4(3), 550–556 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Peng, C., Han, Q.L., Yue, D., Tian, E.: Sampled-data robust H\(_\infty \) control for T-S fuzzy systems with time delay and uncertainties. Fuzzy Sets Syst. 179(1), 20–33 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yoneyama, J.: Robust guaranteed cost control of uncertain fuzzy systems under time-varying sampling. Appl. Soft Comput. 11(1), 249–255 (2011)CrossRefGoogle Scholar
  34. 34.
    Yoneyama, J.: Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach. Inf. Sci. 198, 169–176 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Theesar, S.J.S., Banerjee, S., Balasubramaniam, P.: Synchronization of chaotic systems under sampled-data control. Nonlinear Dyn. 70(3), 1977–1987 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, H., Jing, X., Lam, H.K., Shi, P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Fuzzy Syst. 44(7), 1111–1126 (2014)Google Scholar
  37. 37.
    Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lam, H.K.: Sampled-data fuzzy-model-based control systems: stability analysis with consideration of analogue-to-digital converter and digital-to-analogue converter. Control Theory Appl. IET 4(7), 1131–1144 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Lam, H.K.: Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(1), 258–267 (2012)CrossRefGoogle Scholar
  40. 40.
    Nishikawa, M., Katayama, H., Yoneyama, J., Ichikawa, A.: Design of output feedback controllers for sampled-data fuzzy systems. Int. J. Syst. Sci. 31(4), 439–448 (2000)CrossRefzbMATHGoogle Scholar
  41. 41.
    Lo, J.C., Lin, M.L.: Robust H\(_\infty \) nonlinear control via fuzzy static output feedback. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 50(11), 1494–1502 (2003)MathSciNetGoogle Scholar
  42. 42.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  43. 43.
    Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)CrossRefGoogle Scholar
  44. 44.
    Liu, X., Zhang, Q.: New approaches to H\(_\infty \) controller designs based on fuzzy observers for Takagi-Sugeno fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Liu, X., Zhang, Q.: Approaches to quadratic stability conditions and H\(_\infty \) control designs for Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 11(6), 830–839 (2003)CrossRefGoogle Scholar
  46. 46.
    Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)CrossRefGoogle Scholar
  47. 47.
    Sala, A., Ariño, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)CrossRefzbMATHGoogle Scholar
  48. 48.
    Lo, J.C., Wan, J.R.: Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials. IET Control Theory Appl. 4(11), 2293–2302 (2010)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746. Las Vegas, Nevada, USA (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations