High Sensitivity Magnetometers pp 63-102

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19) | Cite as

Orthogonal Fluxgate Magnetometers

Chapter

Abstract

Orthogonal fluxgate is a particular type of fluxgate, which recently gained popularity. As all fluxgate sensors it is based on the gating of magnetic flux in a ferromagnetic core; however, in orthogonal fluxgates the excitation field and the measured field are orthogonal. This leads to different sensor structure, most notably to the absence of an excitation coil, making the construction of an orthogonal fluxgate very simple. In this chapter we will first analyse the principle of operation of orthogonal fluxgates in order to explain the mechanism which generates the output signal. Then, we will examine how the sensor is build, especially the structure of the core and the techniques typically used in order to minimize the amplitude of excitation current. Next, a particular type of orthogonal fluxgate—the so-called coil-less fluxgate—is presented: its name comes from the lack of the pick-up coil, for the output voltage is derived directly from the core’s termination thanks to helical anisotropy of the core. The most important part of the chapter is however focused on fundamental mode orthogonal fluxgate; in this type of sensor a large dc bias is added to the excitation current in order to suppress the Barkhausen noise, that is the main source of noise in fluxgates. The resulting output has very low noise: we show how, properly designing the core geometry and modifying the anisotropy by annealing we can achieve noise as low as 1 pT/√Hz at 1 Hz. Another part of the chapter is focused on magnetic gradiometers based on orthogonal fluxgates, typically used when the sensor has to be used in noisy environment and the magnetic field to be measured has large gradient and small amplitude. Finally a comparison with similar sensors, such as wire-based GMI, is presented: we show similarities and differences, especially regarding the methods for signal extractions and we explain why orthogonal fluxgates perform better.

References

  1. 1.
    Alldredge, USA Patent 2,856,581, 1952Google Scholar
  2. 2.
    F. Primdahl, The fluxgate mechanism, Part I: the gating curves of parallel and orthogonal fluxgates. IEEE Trans. Magn. MAG-6(2), 376–383 (1970)Google Scholar
  3. 3.
    M. Butta, P. Ripka, Two-domain model for orthogonal fluxgate. IEEE Trans. Magn. 44(11), 3992–3995 (2008)Google Scholar
  4. 4.
    J.P. Sinnecker, K.R. Pirota, M. Knobel, L. Kraus, AC magnetic transport on heterogeneous ferromagnetic wires and tube. J. Magn. Magn. Mater. 249(1–2), 16–21 (2002)Google Scholar
  5. 5.
    P. Ripka, X.P. Li, F. Jie, Orthogonal fluxgate effect in electroplated wires. IEEE Sens. (2005) Google Scholar
  6. 6.
    X.P. Li, Z.J. Zhao, T.B. Oh, H.L. Seet, B.H. Neo, S.J. Koh, Current driven magnetic permeability interference sensor using NiFe/Cu composite wire with a signal pick-up LC circuit. Phys. Status Solidi A 201, 1992–1995 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Butta, P. Ripka, G. Infante, G.A. Badini-Confalonieri, M. Vázquez, Bi-metallic magnetic wire with insulating layer as core for orthogonal fluxgate. IEEE Trans. Magn. 45(10), 4443–4446 (2009)Google Scholar
  8. 8.
    X.P. Li, J. Fan, J. Ding, H. Chiriac, X.B. Qian, J.B. Yi, A design of orthogonal fluxgate sensor. J. Appl. Phys. 99(8), Article number 08B313 (2006). ISSN 0021-8979Google Scholar
  9. 9.
    X.P. Li, J. Fan, J. Ding, X.B. Qian, Multi-core orthogonal fluxgate sensor. J. Magn. Magn. Mater. 300(1), e98–e103 (2006)Google Scholar
  10. 10.
    P. Ripka, X.P. Li, F. Jie, Multiwire core fluxgate. Sens. Actuators, A 156(1), 265–268 (2009). ISSN 0924-4247Google Scholar
  11. 11.
    P. Ripka, M. Butta, F. Jie, X.P. Li, Sensitivity and noise of wire-core transverse fluxgate. IEEE Trans. Magn. 46(2), 654–657 (2010). ISSN 0018-9464Google Scholar
  12. 12.
    F. Jie, N. Ning, W. Ji, H. Chiriac, X.P. Li, Study of the noise in multicore orthogonal fluxgate sensors based on Ni-Fe/Cu composite microwire arrays. IEEE Trans. Magn. 45(Sp. Iss. SI), 4451–4454 (2009). ISSN 0018-9464Google Scholar
  13. 13.
    Y. Terashima, I. Sasada, Magnetic domain Imaging using orthogonal fluxgate probes. J. Appl. Phys. 91(10), 8888–8890 (2002). ISSN 0021-8979Google Scholar
  14. 14.
    J. Kubik, L. Pavel, L. Ripka, P. Kaspar, Low-power printed circuit board fluxgate sensor. IEEE Sens. J. 7(2), 179–183Google Scholar
  15. 15.
    E. Delevoye, A. Audoin, A. Beranger, R. Cuchet, R. Hida, T. Jager, Microfluxgate sensors for high frequency and low power applications. Sens. Actuators, A 145 (SI), 271–277 (2008)Google Scholar
  16. 16.
    M. Butta, P. Ripka, S. Atalay, F.E. Atalay, X.P. Li, Fluxgate effect in twisted magnetic wire. J. Magn. Magn. Mater. 320(20), E974–E978 (2008)Google Scholar
  17. 17.
    M. Butta, P. Ripka, G. Infante, G.A. Badini-Confalonieri, M. Vázquez, Magnetic microwires with field induced helical anisotropy for coil-less fluxgate. IEEE Trans. Magn. 46(7), 2562–2565 (2010)CrossRefGoogle Scholar
  18. 18.
    P. Ripka, M. Butta, M. Malatek, S. Atalay, F.E. Atalay, Characterization of magnetic wires for fluxgate cores. Sens. Actuators, A 145(special issue), 23–28 (2007)Google Scholar
  19. 19.
    M. Butta, P. Ripka, J.P. Navarrete, M. Vázquez, Double coil-less fluxgate in bridge configuration. IEEE Trans. Magn. 46(2), 532–535 (2010)Google Scholar
  20. 20.
    S. Atalay, V. Yagmur, F.E. Atalay, N. Bayri, Coil-less fluxgate effect in CoNiFe/Cu wire electrodeposited under torsion. J. Magn. Magn. Mater. 323(22), 2818–2822 (2011)Google Scholar
  21. 21.
    S. Atalay, P. Ripka, N. Bayri, Coil-less fluxgate effect in (Co0.94Fe0.06)72.5Si12.5B15 amorphous wires. J. Magn. Magn. Mater. 322(15), 2238–2243(2010)Google Scholar
  22. 22.
    M. Butta, P. Ripka, M. Vazquez et al., Microwire electroplated under torsion as core for coil-less fluxgate. Sens. Lett. 11(1, SI), 50–52 (2013)Google Scholar
  23. 23.
    I. Sasada, Orthogonal fluxgate mechanism operated with dc biased excitation. J. Appl. Phys. 91(10), 7789–7791 (2002). ISSN 0021-8979Google Scholar
  24. 24.
    D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman & Hall, London, 1991). ISBN 0-412-38640-2 Google Scholar
  25. 25.
    E. Paperno, Suppression of magnetic noise in the fundamental-mode orthogonal fluxgate. Sens. Actuators, A 116(3), 405–409 (2004). ISSN 0924-4247Google Scholar
  26. 26.
    E. Paperno, E. Weiss, A. Plotkin, A tube-core orthogonal fluxgate operated in fundamental mode. IEEE Trans. Magn. 44(11), 4018–4021 (2008)Google Scholar
  27. 27.
    I. Sasada, H. Kashima, Simple design for orthogonal fluxgate magnetometer in fundamental mode. J. Magn. Soc. Jpn. 33, 43–45 (2009)Google Scholar
  28. 28.
    M. Butta, I. Sasada, Method for offset suppression in orthogonal fluxgate with annealed wire core. Sens. Lett. 12, 1295–1298 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Butta, S. Yamashita, I. Sasada, Reduction of noise in fundamental mode orthogonal fluxgates by optimization of excitation current. IEEE Trans. Magn. 47(10), 3748–3751 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Butta, I. Sasada, Sources of noise in a magnetometer based on orthogonal fluxgate operated in fundamental mode. IEEE Trans. Magn. 48(4), 1508–1511 (2012)Google Scholar
  31. 31.
    C. Dolabdjian, B. Dufay, S. Saez, A. Yelon, D. Menard, Is low frequency excess noise of GMI induced by magnetization fluctuations? in International Conference on Materials and Applications for Sensors and Transducers (ICMAST), 2013, Prague, Czech RepublicGoogle Scholar
  32. 32.
    F. Johnson, H. Garmestani, S. Y. Chu, M.E. McHenry, D.E. Laughlin, Induced anisotropy in FeCo-based nanocrystalline ferromagnetic alloys (HITPERM) by very high field annealing. IEEE Trans. Magn. 40(4), 2697–2699 (2004) Google Scholar
  33. 33.
    P. Butvin, M. Janosek et al., Field annealed closed-path fluxgate sensors made of metallic-glass ribbons. Sens. Actuators, A 184, 72–77 (2012)CrossRefGoogle Scholar
  34. 34.
    I. Sasada, Symmetric response obtained with an orthogonal fluxgate operating in fundamental mode. IEEE Trans. Magn. 38(5), 3377–3379 (2002)Google Scholar
  35. 35.
    Eyal W., Eugene P. Noise investigation of the orthogonal fluxgate employing alternating direct current bias. J. Appl. Phys. 109, 07E529 (2011)Google Scholar
  36. 36.
    P. Ripka (ed.), Magnetic Sensors and Magnetometers (Artech House, Norwood, MA, 2001). ISBN: 1580530575Google Scholar
  37. 37.
    M. Butta, I. Sasada, M. Janosek, Temperature dependence of offset and sensitivity in orthogonal fluxgate operated in fundamental mode. IEEE Trans. Magn. 48(11), 4103–4106 (2012)Google Scholar
  38. 38.
    A. Moldovanu, E.D. Diaconu, C. Ioan, E. Moldovanu, Magnetometric sensors with improved functional parameters. J. Magn. Magn. Mater. 157(158), 442–443 (1996)CrossRefGoogle Scholar
  39. 39.
    Y. Nishio, F. Tohyama, N. Onishi, The sensor temperature characteristics of a fluxgate magnetometer by a wide-range temperature test for a Mercury exploration satellite. Meas. Sci. Technol. 18(8), 2721–2730 (2007)Google Scholar
  40. 40.
    A. Cerman, J.M.G. Merayo, P. Brauer et al., Self-compensating excitation of fluxgate sensors for space magnetometers, in IEEE Instrumentation And Measurement Technology Conference, vols. 1–5, pp. 2059–2064 (2008)Google Scholar
  41. 41.
    M. Butta, I. Sasada, Effect of terminations in magnetic wire on the noise of orthogonal fluxgate operated in fundamental mode. IEEE Trans. Magn. 48(4), 1477–1480 (2012)Google Scholar
  42. 42.
    Shoumu Harada, Ichiro Sasada, Feng Hang, Development of a one dimensional fluxgate array and its application to magnetocardiogram measurements. IEEJ Trans. Fundam. Mater. 133(6), 333–338 (2013)CrossRefGoogle Scholar
  43. 43.
    I. Sasada, S. Harada, Fundamental mode orthogonal fluxgate gradiometer. IEEE Trans. Magn. 50(11) (2014)Google Scholar
  44. 44.
    M. Malatek, B. Dufay, S. Saez, C. Dolabdjian, Improvement of the off-diagonal magnetoimpedance sensor white noise. Sens. Actuators, A 204, 20–24 (2013)CrossRefGoogle Scholar
  45. 45.
    B. Dufay, S. Saez, C. Dolabdjian, A. Yelon, D. Ménard, Characterization of an optimized off-diagonal GMI-based. IEEE Sens. J. 13(1), 379–388 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Ménard, D. Seddaoui, L.G.C. Melo, A. Yelon, B. Dufay, S. Saez, C. Dolabdjian, Perspectives in giant magnetoimpedance magnetometry. Sens. Lett. 7(3), 339–342 (2009)CrossRefGoogle Scholar
  47. 47.
    K. Goleman, I. Sasada, A triaxial orthogonal fluxgate magnetometer made of a single magnetic wire with three U-Shaped branches. IEEE Trans. Magn. 43(6), 2379–2381 (2007) Google Scholar
  48. 48.
    B. Dufay, S. Saez, C. Dolabdjian, D. Seddaoui, A. Yelon, D. Ménard, Improved GMI sensors using strongly-coupled thin pick-up coils. Sens. Lett. 7(3), 334–338 (2009)CrossRefGoogle Scholar
  49. 49.
    L. Kraus, Off-diagonal magnetoimpedance in stress-annealed amorphous ribbons. J. Magn. Magn. Mater. 320(20), E746–E749 (2008)Google Scholar
  50. 50.
    K. Knobel, M. Vázquez, L. Kraus, Giant Magneto Impedance, Handbook of Magnetic Materials, vol. 15 (Elsevier, K.H.J. Buschow, 2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Czech Technical University in PraguePragueCzech Republic

Personalised recommendations