Advertisement

Magnetic Resonance Based Atomic Magnetometers

  • Antoine WeisEmail author
  • Georg Bison
  • Zoran D. Grujić
Chapter
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)

Abstract

The chapter gives a comprehensive account of the theory of atomic magnetometers deploying optically detected magnetic resonance (ODMR) in spin-polarized atomic ensembles, and of the practical realization of such magnetometers. We address single laser beam experiments throughout, but give explicit hints on how the results can be extended to pump-probe configurations. After a general introduction and the presentation of a classification of atomic magnetometer principles, we address the three major processes, viz., polarization creation, atom-field interaction, and optical detection that occur in the subclass of magnetic resonance-based magnetometers. The time-independent signals on which so-called Hanle magnetometers built are also reviewed for both spin-oriented and spin-aligned media. In the extended central part we derive an algebraic master expression (valid for all ODMR magnetometers) that expresses the signal, i.e., the detected time-dependent light power in terms of all system parameters. We then give explicit algebraic results for the absolute signals observed in the so-called Mz- and Mx-configurations for various geometries with arbitrary relative orientations of the static field, the oscillating field and the light propagation direction. Although the chapter’s main focus is on magnetic resonance processes driven by oscillating magnetic fields (we treat both spin-oriented and spin-aligned media), we also address magnetometers in which the magnetic resonance is driven by amplitude-, frequency-, or polarization-modulated light. The final section of the chapter gives a detailed account of the physical realization of an Mx-magnetometer array and the electronics used for its operation. We demonstrate that the observed resonance signals have the predicted spectral shapes and illustrate procedures for optimizing the magnetometric sensitivity.

References

  1. 1.
    D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002)CrossRefGoogle Scholar
  2. 2.
    D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Budker, D.F. Jackson Kimball (ed.), Optical Magnetometry (Cambridge University Press, Cambridge, 2013)Google Scholar
  4. 4.
    J.C. Lehmann, C. Cohen-Tannoudji, Pompage optique en champ magnétique faible. CR Acad. Sci. Paris 258, 4463 (1964)Google Scholar
  5. 5.
    T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, H.-G. Meyer, Light-narrowed optically pumped M x magnetometer with a miniaturized Cs cell. Phys. Rev. A 84, 043416 (2011)Google Scholar
  6. 6.
    N. Castagna, A. Weis, Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect. Phys. Rev. A 84, 053421 (2012). (85:059907, November 2011. Erratum)Google Scholar
  7. 7.
    N. Castagna, A. Weis, Erratum: Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect. Phys. Rev. A 85, 059907 (2012) ([Phys. Rev. A 84, 053421 (2011)])Google Scholar
  8. 8.
    E. Breschi, A. Weis, Ground-state Hanle effect based on atomic alignment. Phys. Rev. A 86(5), 053427 (2012)Google Scholar
  9. 9.
    I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422(6932), 596–599 (2003)CrossRefGoogle Scholar
  10. 10.
    Z.D. Grujić, P.A. Koss, G. Bison, A. Weis, A sensitive and accurate atomic magnetometer based on free spin precession. Eur. Phys. J. D 69, 1–10 (2015)Google Scholar
  11. 11.
    L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, H. Failache, Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor. Phys. Rev. A 89(4), 043836 (2014)Google Scholar
  12. 12.
    A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L.M. Schreiber, M. Terekhov, Ultrasensitive 3He magnetometer for measurements of high magnetic fields. Eur. Phys. J. D 68(11), 1–12 (2014)Google Scholar
  13. 13.
    C. Cohen-Tannoudji, J. Duppont-Roc, S. Haroche, F. Laloë, Detection of the static magnetic field produced by the oriented nuclei of optically pumped He-3 gas. Phys. Rev. Lett. 22(15), 758 (1969)Google Scholar
  14. 14.
    H.C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, Design and performance of an absolute 3He/Cs magnetometer. Eur. Phys. J. D 69, 1–12 (2015)Google Scholar
  15. 15.
    L. Moi, S. Cartaleva, Sensitive magnetometers based on dark states. Europhys. News 43(6), 2427 (2012)Google Scholar
  16. 16.
    C. Cohen-Tannoudji, A. Kastler, Optical pumping. Rev. Mod. Phys. 5, 1–81 (1966)Google Scholar
  17. 17.
    W. Happer, Optical pumping. Rev. Mod. Phys. 44(2), 169–249 (1972)Google Scholar
  18. 18.
    S.M. Rochester, D. Budker, Atomic polarization visualized. Am. J. Phys. 69(4), 450 (2001)CrossRefGoogle Scholar
  19. 19.
    K. Blum, Density matrix theory and applications (Plenum Press, Berlin, 1996)CrossRefzbMATHGoogle Scholar
  20. 20.
    I. Fescenko, A. Weis, Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms. J. Phys. D Appl. Phys. 47(23), 235001 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Weis, V.A. Sautenkov, T.W. Hänsch, Observation of ground-state Zeeman coherences in the selective reflection from cesium vapor. Phys. Rev. A 45(11), 7991 (1992)Google Scholar
  22. 22.
    B. Gross, N. Papageorgiou, V. Sautenkov, A. Weis, Velocity selective optical pumping and dark resonances in selective reflection spectroscopy. Phys. Rev. A 55(4), 2973 (1997)CrossRefGoogle Scholar
  23. 23.
    A. Weis. unpublishedGoogle Scholar
  24. 24.
    G. Bevilacqua, E. Breschi, A. Weis, Steady-state solutions for atomic multipole moments in an arbitrarily oriented static magnetic field. Phys. Rev. 89(3), 033406 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)Google Scholar
  26. 26.
    N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, A. Weis, A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells. Appl. Phys. B Lasers Opt. 96, 763–772 (2009)Google Scholar
  27. 27.
    G. Bison, R. Wynands, A. Weis, Optimization and performance of an optical cardiomagnetometer. J. Opt. Soc. Am. B 22(1), 77–87 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, A. Weis, A high-sensitivity laser-pumped M x magnetometer. Eur. Phys. J. D 38, 239–247 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Weis, G. Bison, A.S. Pazgalev, Theory of double resonance magnetometers based on atomic alignment. Phys. Rev. A 74, 033401 (2006)CrossRefGoogle Scholar
  30. 30.
    U. Fano, Precession equation of a spinning particle in nonuniform fields. Phys. Rev. 133(3B), B828 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    H.-J. Stöckmann, D. Dubbers, Generalized spin precession equations. New J. Phys. 16(5), 053050 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A.S. Pazgalev, M. Rebetez, H. Saudan, A. Weis, Experimental study of laser-detected magnetic resonance based on atomic alignment. Phys. Rev. A, 74(6), 063415 (2006)Google Scholar
  33. 33.
    G. Di Domenico, H. Saudan, G. Bison, P. Knowles, A. Weis, Sensitivity of double-resonance alignment magnetometers. Phys. Rev. A 76(2), 023407 (2007)CrossRefGoogle Scholar
  34. 34.
    W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961)CrossRefGoogle Scholar
  35. 35.
    E. Breschi, Z.D. Grujić, P. Knowles, A. Weis, A high-sensitivity push-pull magnetometer. Appl. Phys. Lett. 104(2), 023501 (2014)CrossRefGoogle Scholar
  36. 36.
    V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, H.-G. Meyer, Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer. Opt. Express 20(13), 14201–14212 (2012)Google Scholar
  37. 37.
    V. Acosta, M.P. Ledbetter, S.M. Rochester, D. Budker, D.F. Jackson Kimball, D.C. Hovde, W. Gawlik, S. Pustelny, J. Zachorowski, V.V. Yashchuk, Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A 73(5), 053404 (2006)Google Scholar
  38. 38.
    D.F. Jackson Kimball, L.R. Jacome, S. Guttikonda, E.J. Bahr, L.F. Chan, Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line. J. Appl. Phys. 106(6), 063113 (2009)Google Scholar
  39. 39.
    I. Fescenko, P. Knowles, A. Weis, E. Breschi, A Bell-Bloom experiment with polarization-modulated light of arbitrary duty cycle. Opt. Express 21(13), 15121–15130 (2013)Google Scholar
  40. 40.
    E. Breschi, Z.D. Gruijć, P. Knowles, A. Weis, Magneto-optical spectroscopy with polarization-modulated light. Phys. Rev. A 88(2),022506 (2013)Google Scholar
  41. 41.
    G. Bevilacqua, E. Breschi, Magneto-optic spectroscopy with linearly polarized modulated light: theory and experiment. Phys. Rev. A 89(6), 062507 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Bass, in Handbook of Optics: Fundamentals, techniques, and design. Number Bd. 1. Handbook of Optics (McGraw-Hill, New York, 1994)Google Scholar
  43. 43.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall Inc, Upper Saddle River, 1993)zbMATHGoogle Scholar
  44. 44.
    D.C. Rife, R. Boorstyn, Single tone parameter estimation from discrete-time observations. Inf. Theor. IEEE Trans. 20(5), 591–598 (1974)CrossRefzbMATHGoogle Scholar
  45. 45.
    V. Schultze, R. IJsselsteijn, H.-G. Meyer, Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 100(4), 717–724 (2010)CrossRefGoogle Scholar
  46. 46.
    A. Corney, Atomic and laser spectroscopy (Clarendon Press, Oxford, 1978)Google Scholar
  47. 47.
    A. Abragam, The principles of nuclear magnetic resonance (Clarendon, Oxford, 1961)Google Scholar
  48. 48.
    A.L. Bloom, Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61 (1962)CrossRefGoogle Scholar
  49. 49.
    Stanford Research Systems. www.thinksrs.com
  50. 50.
    Signal Recovery. www.signalrecovery.com
  51. 51.
    Zurich Instruments AG. www.zhinst.com
  52. 52.
    J.E. Volder, The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. EC 8(3), 330–334 (1959)Google Scholar
  53. 53.
    J. Gaspar, S.F. Chen, A. Gordillo, M. Hepp, P. Ferreyra, C. Marqués, Digital lock in amplifier: study, design and development with a digital signal processor. Microprocess. Microsyst. 28(4), 157–162 (2004)Google Scholar
  54. 54.
    Stanford Research Systems, Users Manual, Model SR830 DSP Lock-In Amplifier (2011)Google Scholar
  55. 55.
    A. Restelli, R. Abbiati, A. Geraci, Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. Rev. Sci. Instrum. 76(9), 093112 (2005)CrossRefGoogle Scholar
  56. 56.
    J.-J. Vandenbussche, P. Lee, J. Peuteman, On the accuracy of digital phase sensitive detectors implemented in FPGA technology. IEEE Trans. Instrum. Measur. 63(8), 1926–1936 (2014)Google Scholar
  57. 57.
    Y. Hu, The quantization effects of the CORDIC algorithm. IEEE Trans. Sig. Process. 40(4),834–844 (1992)Google Scholar
  58. 58.
    K.J. Åström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2 edn. (Instrument Society of America, Research Triangle Park, NC, 1995)Google Scholar
  59. 59.
    G. Lembke, S.N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, G. Bison, Optical multichannel room temperature magnetic field imaging system for clinical application. Biomed. Opt. Express 5(3), 876–881 (2014)CrossRefGoogle Scholar
  60. 60.
    G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, A. Weis, A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95(17), 173701 (2009)Google Scholar
  61. 61.
    H. Xia, A. Ben-Amar Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006)Google Scholar
  62. 62.
    CODIXX AG. www.codixx.de
  63. 63.
    Hamamatsu Photonics. Si PIN Photodiodes, S6775 series datasheet (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of FribourgFribourgSwitzerland
  2. 2.Paul Scherrer InstitutVilligenSwitzerland

Personalised recommendations