Ethnomathematical Barters

  • Aldo Parra-SanchezEmail author


This chapter identifies and criticizes one assumption of the ethnomathematical research field, regarding the ways in which the relationship between mathematics and culture is addressed. Many developments and theoretical conflicts within this field can be traced to that assumption, which has been widespread indistinctly by practitioners and critics of ethnomathematics. Looking for a new understanding of this field, an alternative approach is proposed, trying to respond to some theoretical critiques and prompting new horizons. This intended approach privileges non-colonialist interactions among stakeholders, recognizing their different interests, their different ways to conceptualize and their interdependence. It is discussed how interactions can be conducted to hybridize different kinds of knowledge, constituting political and epistemological endeavors. The essay concludes observing which types of problems would appear due to the new approach.


Indigenous People Cultural Group Mathematical Practice Family Resemblance Conceptual Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A brief and early version of this chapter was published in the Proceeding of the Eighth International Mathematics Education and Society Conference, in 2015. The research leading to this chapter was funded by Departamento Administrativo de Ciencias, Tecnología e Innovación (COLCIENCIAS) and Aalborg University in Denmark. I would like to thank the members of the Science and Mathematics Education Research Group (SMERG) at Aalborg University for their comments on previous drafts of this chapter. This research is also part of the NordForsk Center of Excellence “JustEd.”


  1. Alangui, W. (2010). Stone walls and water flows: Interrogating cultural practice and mathematics. Auckland, New Zealand: University of Auckland.Google Scholar
  2. Albertí Palmer, M. (2007). Interpretación matemática situada de una práctica artesanal. Barcelona: Universitat Autónoma de Barcelona.Google Scholar
  3. Ascher, M., & Ascher, R. (1986). Ethnomathematics. History of Science, 24, 125–144.CrossRefGoogle Scholar
  4. Barton, B. (1996). Making sense of ethnomathematics: Ethnomathematics is making sense. Educational Studies in Mathematics, 31(1–2), 201–233.CrossRefGoogle Scholar
  5. Barton, B. (2008). The language of mathematics: Telling mathematical tales (Mathematics Education Library). New York: Springer.CrossRefGoogle Scholar
  6. Bishop, A. J. (1994). Cultural conflicts in mathematics education: Developing a research agenda. For the Learning of Mathematics, 14(2), 15–18.Google Scholar
  7. Brayboy, B. M. J. (2008). Yakkity yak” and “talking back”: An examination of sites of survivance in Indigenous knowledge. In M. Villegas, S. Neugebauer, & K. Venegas (Eds.), Indigenous knowledge and education: Sites of struggle, strength, and survivance (pp. 339–346). Cambridge, MA: Harvard Education Press.Google Scholar
  8. Caicedo, N., Guegia, G., Parra, A., Guegia, A., Guegia, C., Calambas, L., et al. (2009). Matemáticas en el mundo Nasa. Bogotá, Colombia: CIIIT.Google Scholar
  9. Cauty, A. (2001). Matemática y Lenguajes: Como seguir siendo amerindio y aprender la matemáticas que necesitara? In A. L. G. Zapata (Ed.), Pluriculturalidad y aprendizaje de la matemática en américa latina: Experiencias y desafíos (pp. 49–87). Madrid: Ediciones Morata.Google Scholar
  10. Chambers, I. (1996). Signs of silence, lines of listening. In I. Chambers & L. Curti (Eds.), The post-colonial question: Common skies, divided horizons (pp. 47–62). London: Routledge.CrossRefGoogle Scholar
  11. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5(1), 44–48.Google Scholar
  12. D’Ambrosio, U. (1993). Etnomatemática: Um Programa. Educação Matemática em Revista: Revista da Sociedade Brasileira de Educação Matemática–SBEM, 1(1), 5–11.Google Scholar
  13. D’Ambrosio, U. (2001). Etnomatemática: elo entre as tradições e a modernidade. Belo Horizonte: Autêntica Editora.Google Scholar
  14. D’Ambrosio, U. (2006). Ethnomathematics. Link between traditions and modernity. Rotterdam: Sense Publishers.Google Scholar
  15. D’Ambrosio, U. (2012). The Program Ethnomathematics: the theoretical basis and dynamics of cultural encounters Cosmopolis. A Journal of Cosmopolitics/Revue de cosmopolitique, 3–4, 13–41.Google Scholar
  16. Eglash, R. (2000). Anthropological perspectives on ethnomathematics. In H. Selin & U. D’Ambrosio (Eds.), Mathematics Across Cultures (pp. 13–22). Dordrecht: Springer.CrossRefGoogle Scholar
  17. Fasheh, M. (1990). Community education: To reclaim and transform what has been made invisible. Harvard Educational Review, 60(1), 19–35.CrossRefGoogle Scholar
  18. Ferreira, E. S. (1994). A importância do conhecimento etnomatemático indígena na escola dos não-índios. Em Aberto, 14(62), 89–95.Google Scholar
  19. Furuto, L. H. L. (2014). Pacific ethnomathematics: Pedagogy and practices in mathematics education. Teaching Mathematics and Its Applications, 33(2), 110–121. doi: 10.1093/teamat/hru009.CrossRefGoogle Scholar
  20. Gerdes, P. (2007). Etnomatemática—Reflexões sobre Matemática e Diversidade Cultura. Ribeirão: Edições Húmus.Google Scholar
  21. Knijnik, G. (1996). Exclusão e resistência: educação matemática e legitimidade cultural. Porto Alegre, Brazil: Artes Médicas.Google Scholar
  22. Knijnik, G. (2012). Differentially positioned language games: Ethnomathematics from a philosophical perspective. Educational Studies in Mathematics, 80(1–2), 87–100. doi: 10.1007/s10649-012-9396-8.CrossRefGoogle Scholar
  23. Knijnik, G., Wanderer, F., Giongo, I., & Duarte, C. G. (2012). Etnomatemática em movimento. Belo Horizonte: Autêntica.Google Scholar
  24. Lins, R. C. (2004). Matemática, monstros, significados e educação matemática. In M. A. V. Bicudo & M. C. O. Borba (Eds.), Educação matemática: pesquisa em movimento (pp. 92–120). São Paulo: Cortez.Google Scholar
  25. Lizcano, E. (2002). Las matemáticas de la tribu europea: un estudio de caso. In II International Congress on Ethnomathematics, Ouro Preto, Brasil (pp. 5–8).Google Scholar
  26. Meaney, T., Trinick, T., & Fairhall, U. (2011). Collaborating to meet language challenges in indigenous mathematics classrooms (Mathematics Education Library (Vol. 52)). New York: Springer.Google Scholar
  27. Miarka, R., & Bicudo, M. A. V. (2012). Matemática e/na/ou Etnomatemática? Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática, 5(1), 149–158.Google Scholar
  28. Millroy, W. L. (1992). An ethnographic study of the mathematical ideas of a group of carpenters. Journal for Research in Mathematics Education. Monograph, 5. doi:  10.2307/749904.
  29. NASGEM. Journal of Mathematics and Culture. Retrieved October 23, from
  30. Pais, A. (2011). Criticisms and contradictions of ethnomathematics. Educational Studies in Mathematics, 76(2), 209–230. doi: 10.1007/s10649-010-9289-7.CrossRefGoogle Scholar
  31. Pais, A. (2012). A investigação em etnomatemática e os limites da cultura. Reflexão e Ação, 20(2), 32–48.Google Scholar
  32. Pais, A. (2013). Ethnomathematics and the limits of culture. For the Learning of Mathematics, 33(3), 2–6.Google Scholar
  33. Rohrer, A. V., & Schubring, G. (2013). The interdisciplinarity of ethnomathematics: Challenges of ethnomathematics to mathematics and its education. Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática, 6(3), 78–87.Google Scholar
  34. Rowlands, S., & Carson, R. (2002). Where would formal, academic mathematics stand in a curriculum informed by ethnomathematics? A critical review of ethnomathematics. Educational Studies in Mathematics, 50(1), 79–102. doi: 10.1023/A:1020532926983.CrossRefGoogle Scholar
  35. Selin, H., & D’Ambrosio, U. (2001). Mathematics across cultures: The history of non-Western mathematics (Vol. 2). Dordrecht: Springer.Google Scholar
  36. Townsend, S. (2012). Minga: The communal work tradition of Bolivia. Americas, 64(3), 14–17.Google Scholar
  37. Vithal, R., & Skovsmose, O. (1997). The end of innocence: A critique of “ethnomathematics”. Educational Studies in Mathematics, 34(2), 131–157. doi: 10.1023/A:1002971922833.CrossRefGoogle Scholar
  38. Woolgar, S. (1988). Knowledge and reflexivity: New frontiers in the sociology of knowledge. London: Sage.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.UNESCO Center of PBL in Engineering and Science, Department of Planning and DevelopmentAalborg UniversityAalborgDenmark

Personalised recommendations