Advertisement

Revisiting Mathematics for All: A Commentary to Pais’s Critique

  • Uwe GellertEmail author
Chapter

Abstract

Doubts have been expressed whether research and development in mathematics education really support improvement of the processes of teaching and learning mathematics at school. The critique says that programmatic endeavours, such as “mathematics for all”, tend to end up in rhetorical claims that conceal the structural conditions of inequity of institutionalised instruction. In this chapter, which is inspired by several publications of Alexandre Pais, I argue for further reflections on the demands of mathematical knowledge in contemporary society. The topic of universality of mathematical education is the pivot around which historical, functional, emancipatory and political issues unfold.

Keywords

Down Syndrome Mathematics Education Cultural Translation Political Sector Didactic Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I want to thank Anna Llewellyn, Candia Morgan and the editors of this volume for their helpful comments and suggestions.

References

  1. Baldino, R., & Cabral, T. C. (2006). Inclusion and diversity from Hegel-Lacan point of view: Do we desire our desire for change? International Journal of Science and Mathematics Education, 4(1), 19–43.CrossRefGoogle Scholar
  2. Bourdieu, P. (1989). La noblesse d’état. Grandes écoles et esprit de corps. Paris: Minuit.Google Scholar
  3. Broomes, D. (1989). The mathematical demands of a rural economy. In C. Keitel, P. Damerow, A. Bishop, & P. Gerdes (Eds.), Mathematics, education, and society (pp. 19–21). Paris: UNESCO.Google Scholar
  4. Butler, J., Laclau, E., & Žižek, S. (2000). Contingency, hegemony, universality: Contemporary dialogues on the left. London: Verso.Google Scholar
  5. CIEAEM. (2000). 50 Years of CIEAEM: where we are and where we go. Manifesto 2000 for the year of mathematics. Berlin: Freie Universität Berlin.Google Scholar
  6. Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 3–38). Charlotte: IAP.Google Scholar
  7. Damerow, P., Dunkley, M. E., Nebres, B. F., & Werry, B. (Eds.). (1984a). Mathematics for all: problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority. Paris: UNESCO.Google Scholar
  8. Damerow, P., Dunkley, M. E., Nebres, B. F., & Werry, B. (1984b). Introduction: report on the work of theme group 1 “Mathematics for All” at ICME 5. In P. Damerow, M. E. Dunkley, B. F. Nebres, & B. Werry (Eds.), Mathematics for all: Problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority (pp. 1–10). Paris: UNESCO.Google Scholar
  9. Damerow, P., & Westbury, I. (1984). Conclusions drawn from the experiences of the New Mathematics movement. In P. Damerow, M. E. Dunkley, B. F. Nebres, & B. Werry (Eds.), Mathematics for all: Problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority (pp. 22–25). Paris: UNESCO.Google Scholar
  10. Damerow, P., & Westbury, I. (1985). Mathematics for all: Problems and implications. Journal of Curriculum Studies, 17(2), 175–184.CrossRefGoogle Scholar
  11. Davis, K., & Moore, W. (1945). Some principles of stratification. American Sociological Review, 10(2), 242–245.CrossRefGoogle Scholar
  12. De Lange, J. (1984). Mathematics for all is no mathematics at all. In P. Damerow, M. E. Dunkley, B. F. Nebres, & B. Werry (Eds.), Mathematics for all: Problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority (pp. 66–71). Paris: UNESCO.Google Scholar
  13. Dowling, P. (1998). The sociology of mathematics education: Mathematical myths/pedagogic text. London: RoutledgeFalmer.Google Scholar
  14. Fend, H. (2006). Neue Theorie der Schule. Einführung in das Verstehen von Bildungssystemen. Wiesbaden: VS.Google Scholar
  15. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht: Kluwer.Google Scholar
  16. Gates, P., & Vistro-Yu, C. (2003). Is mathematics for all? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 31–73). Dordrecht: Kluwer.CrossRefGoogle Scholar
  17. Gates, P., & Zevenbergen, R. (2009). Foregrounding social justice in mathematics teacher education. Journal of Mathematics Teacher Education, 12(3), 161–170.CrossRefGoogle Scholar
  18. Gellert, U. (2006). Mathematik “in der Welt” und mathematische “Grundbildung.” Zur Konsistenz des mathematikdidaktischen Rahmens von PISA. In T. Jahnke & W. Meyerhöfer (Eds.), Pisa & Co. Kritik eines Programms (pp. 277–291). Franzbecker: Hildesheim.Google Scholar
  19. Gellert, U. (2010). Modalities of local integration of theories in mathematics education. In B. Sriraman & L. English (Eds.), Theories of mathematics education: seeking new frontiers (pp. 537–550). Berlin: Springer.CrossRefGoogle Scholar
  20. Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., & Woloshin, S. (2008). Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest, 8(2), 53–96.Google Scholar
  21. Gispert, H., & Schubring, G. (2011). Societal, structural, and conceptual changes in mathematics teaching: reform processes in France and Germany over the twentieth century and the international dynamics. Science in Context, 24(1), 73–106.CrossRefGoogle Scholar
  22. Hartmann, M. (1996). Topmanager. Die Rekrutierung einer Elite. Frankfurt: Campus.Google Scholar
  23. Hartmann, M. (2007). Eliten und Macht in Europa. Ein internationaler Vergleich. Frankfurt: Campus.Google Scholar
  24. Hartmann, M. (2010). Elites and power structure. In S. Immerfall & G. Therborn (Eds.), Handbook of European societies: social transformations in the 21st century (pp. 291–323). New York: Springer.CrossRefGoogle Scholar
  25. Howson, G., Keitel, C., & Kilpatrick, J. (1981). Curriculum development in mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Hoyles, C., Noss, R., Kent, P., & Bakker, A. (2010). Improving mathematics at work: The need for techno-mathematical literacies. London: Routledge.Google Scholar
  27. Hudson, B. (2008). Learning mathematically as social practice in a workplace setting. In A. Watson & P. Winbourne (Eds.), New directions for situated cognition in mathematics education (pp. 287–302). New York: Springer.CrossRefGoogle Scholar
  28. Jahnke, H. N. (1986). Origins of school mathematics in early nineteenth-century Germany. Journal of Curriculum Studies, 18(1), 85–94.CrossRefGoogle Scholar
  29. Jensen, U. K. (1984). An evolution towards mathematics for all in upper secondary education in Denmark. In P. Damerow, M. E. Dunkley, B. F. Nebres, & B. Werry (Eds.), Mathematics for all: Problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority (pp. 55–57). Paris: UNESCO.Google Scholar
  30. Jones, P. S. (1970). A history of mathematical education in the United States and Canada. Washington: NCTM.Google Scholar
  31. Kanté, S. B. (1989). Critical issues of mathematics education in the Ivory Coast. In C. Keitel, P. Damerow, A. Bishop, & P. Gerdes (Eds.), Mathematics, education, and society (pp. 78–79). Paris: UNESCO.Google Scholar
  32. Keitel, C. (1987). What are the goals of mathematics for all? Journal of Curriculum Studies, 19(5), 393–407.CrossRefGoogle Scholar
  33. Keitel, C., Damerow, P., Bishop, A., & Gerdes, P. (Eds.). (1989). Mathematics, education, and society. Paris: UNESCO.Google Scholar
  34. Kollosche, D. (2014). Mathematics and power: An alliance in the foundations of mathematics and its teaching. ZDM: The International Journal on Mathematics Education, 46(7), 1061–1072.CrossRefGoogle Scholar
  35. Lundin, S. (2012). Hating school, loving mathematics: On the ideological function of critique and reform in mathematics education. Educational Studies in Mathematics, 80(1–2), 73–85.CrossRefGoogle Scholar
  36. Naumann, J. (1989). Practical aspects of basic mathematics teaching in Senegalese villages. In C. Keitel, P. Damerow, A. Bishop, & P. Gerdes (Eds.), Mathematics, education, and society (pp. 79–81). Paris: UNESCO.Google Scholar
  37. Pais, A. (2012). A critical approach to equity. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (pp. 49–91). Rotterdam: Sense.CrossRefGoogle Scholar
  38. Parsons, T. (1959). The school class as a social system. Harvard Educational Review, 29(4), 297–318.Google Scholar
  39. Posselt, G. (2013). Grundlinien einer Debatte. Einführung zur deutschen Ausgabe. In J. Butler, E. Laclau, & S. Žižek (Eds.), Kontingenz, Hegemonie, Universalität. Aktuelle Dialoge zur Linken (pp. VII–XXVI). Wien: Turia + Kant.Google Scholar
  40. Riall, R., & Burghes, D. (2000). Mathematical needs of young employees. Teaching Mathematics and Its Applications, 19(3), 104–113.CrossRefGoogle Scholar
  41. Silver, E. A., & Herbst, P. (2007). Theory in mathematics education scholarship. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 39–67). Charlotte: IAP.Google Scholar
  42. Souviney, R. (1989). The Indigenous Mathematics Project: Mathematics instruction in Papua New Guinea. In C. Keitel, P. Damerow, A. Bishop, & P. Gerdes (Eds.), Mathematics, education, and society (pp. 106–109). Paris: UNESCO.Google Scholar
  43. Stacey, K., Almuna, F., Caraballo, R. M., Chesné, J.-F., Garfunkel, S., Gooya, Z., et al. (2015). PISA’s influence on thought and action in mathematics education. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 275–306). Cham: Springer.Google Scholar
  44. Straehler-Pohl, H., & Pais, A. (2014). To participate or not to participate? That is not the question! In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 1794–1803). Ankara: Middle East Technical University.Google Scholar
  45. Ullmann, P. (2008). Mathematik, Moderne, Ideologie. Eine kritische Studie zur Legitimität und Praxis der modernen Mathematik. Konstanz: UVK.Google Scholar
  46. UNESCO. (1990). World declaration on education for all. Bangkok: UNESCO Regional Office for Education in Asia and the Pacific.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Fachbereich Erziehungswissenschaft und PsychologieFreie Universität BerlinBerlinGermany

Personalised recommendations