The Effects of School Geometry in the Shaping of a Desired Child

  • Melissa Andrade-MolinaEmail author
  • Paola Valero


In this chapter we explore how school geometry becomes a technology for the government of the self, and how the pedagogical devices of school geometry conduct students’ ways of thinking and acting. We contend that students, in their working with pedagogical devices, engage in a training process in which they learn to regulate their own conduct so that they perceive space through the trained eyes of reason provided by Euclidean, school geometry. Our contribution is an analysis of the power effects of school geometry in terms of the fabrication of children’s subjectivities towards the shaping of the desired child of society.


Mathematics Education Euclidean Geometry Spatial Ability Geometrical Figure Spatial Skill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is funded by the National Commission for Scientific and Technological Research, CONICYT PAI/INDUSTRIA 79090016, in Chile and by Aalborg University, in Denmark. This research also makes part of the NordForsk Center of Excellence “JustEd”. We would like to thank Elizabeth de Freitas, the reviewers and editors for their comments to previous drafts of this chapter.


  1. Andrade, M., & Montecino, A. (2011). La problemática de la tridimensionalidad y su representación en el plano. In A. Ruiz & E. Mancera (Eds.), Proceedings of XIII Conferencia Interamericana de Educación Matemática (CIAEM-IACME). Brasil: Recife.Google Scholar
  2. Andrade-Molina, M. (2015). Geometría escolar: Una batalla entre razón versus lógica y razonamiento. Proceedings of XIV Conferencia Interamericana de Educación Matemática (CIAEM-IACME).
  3. Andrade-Molina, M., & Valero, P. (2015). The sightless eyes of reason: Scientific objectivism and school geometry. Proceedings of 9th Congress if European Research in Mathematics Education. Google Scholar
  4. Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning. (Vol. 2, pp. 843–908).Google Scholar
  5. Blumenfeld, W. (1913). Untersuchungen über die scheinbare Größe im Sehraume. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 65, 241–404.Google Scholar
  6. Boi, L. (2004). Questions regarding Husserlian geometry and phenomenology. a study of the concept of manifold and spatial perception. Husserl Studies, 20(3), 207–267.CrossRefGoogle Scholar
  7. Bórquez, E., & Setz, J. (2012). Matemática cuarto año de Enseñanza Media. Guía didáctica del docente. Santiago: Santillana.Google Scholar
  8. Burgin, V. (1987). Geometry and abjection. AA Files, 35–41.Google Scholar
  9. Clements, M. A. (2008). Spatial abilities, mathematics, culture, and the Papua New Guinea experience. In P. Clarkson & N. Presmeg (Eds.), Critical issues in mathematics education: Major contributions of Alan Bishop (pp. 97–106). New York: Springer.CrossRefGoogle Scholar
  10. Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York: Macmillan.Google Scholar
  11. Cotoi, C. (2011). Neoliberalism: A Foucauldian perspective. International Review of Social Research, 1(2), 109–124.CrossRefGoogle Scholar
  12. Crary, J. (1992). Techniques of the observer: On vision and modernity in the nineteenth century. Cambridge, MA: MIT Press.Google Scholar
  13. Del Grande, J. (1990). Spatial sense. The Arithmetic Teacher, 37(6), 14–20.Google Scholar
  14. Del Valle, J., Muñoz, G., & Santis, M. (2014). Matemática primer año de Enseñanza Media. Texto del Estudiante. Santiago: Ediciones SM Chile.Google Scholar
  15. Diaz, J. D. (2014). Governing equality. European Education, 45(3), 35–50. doi: 10.2753/EUE1056-4934450303.CrossRefGoogle Scholar
  16. Foucault, M. (1979). Discipline and punish (A. Sheridan, Trans.) New York: Pantheon.Google Scholar
  17. Foucault, M. (1982). The subject and power. Critical Inquiry, 8(4), 777–795.CrossRefGoogle Scholar
  18. Foucault, M. (1984). The ethics of the concern of the self as a practice of freedom. In P. Rabinow (Ed.), Ethics, subjectivity and truth, essential works of Michel Foucault, 1954-1984 (pp. 281–302). London: Penguin.Google Scholar
  19. Foucault, M. (1988). Technologies of the self. In L. H. Martin, H. Gutman, & P. H. Hutton (Eds.), Technologies of the self (pp. 16–49). Amherst: University of Massachusetts Press.Google Scholar
  20. Foucault, M. (1993). About the beginning of the hermeneutics of the self: Two lectures at Dartmouth. Political Theory, 21(2), 198–227.CrossRefGoogle Scholar
  21. Foucault, M. (1997). Technologies of the self. In M. Foucault & P. Rabinow (Eds.), Ethics: Subjectivity and truth (pp. 223–251). New York: The New Press.Google Scholar
  22. Foucault, M. (2008). The birth of biopolitics: Lectures at the Collège de France, 1978-79. (G. Burchell, Trans.) New York: Palgrave Macmillan.Google Scholar
  23. Foucault, M. (2009). Security, territory, population: Lectures at the College de France 1977-1978 (G. Burchell, Ed., M. Senellart, F. Ewald, A. Fontana, Trans.). New York: Macmillan.Google Scholar
  24. Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Study of Mathematics, 74, 163–183.CrossRefGoogle Scholar
  25. Hardy, L. H., Rand, G., & Rittler, M. (1951). Investigation of visual space: The Blumenfeld alleys. A.M.A. Archives of Ophthalmology, 45(1), 53–63.CrossRefGoogle Scholar
  26. Hauptman, H. (2010). Enhancement of spatial thinking with Virtual Spaces 1.0. Computers and Education, 54(1), 123–135.CrossRefGoogle Scholar
  27. Kollosche, D. (2014). Mathematics and power: An alliance in the foundations of mathematics and its teaching. ZDM, 46(7), 1061–1072.CrossRefGoogle Scholar
  28. Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579.CrossRefGoogle Scholar
  29. Lefebvre, H. (1991). The production of space (Donald Nicholson-Smith Trans.) Oxford, UK, Cambridge, USA: Blackwell.Google Scholar
  30. Lemke, T. (2002). Foucault, governmentality, and critique. Rethinking Marxism: A Journal of Economics, Culture and Society, 14(3), 49–64. doi: 10.1080/089356902101242288.CrossRefGoogle Scholar
  31. Mevarech, Z., & Kramarski, B. (2014). Critical maths for innovative societies. The role of metacognitive pedagogies. Paris: OECD Publishing. doi: 10.1787/9789264223561-en.Google Scholar
  32. Ministerio de Educación de Chile. (2004). Matemática. Programa de Estudio. Tercer Año Medio. Santiago: MINEDUC.Google Scholar
  33. Ministerio de Educación de Chile. (2004a). Matemática. Programa de Estudio. Cuarto Año Medio. Santiago: MINEDUC.Google Scholar
  34. Ministerio de Educación de Chile. (2010). Mapas de Progreso del Aprendizaje. Geometría. Santiago: MINEDUC.Google Scholar
  35. Ministerio de Educación de Chile. (2011). Matemática. Programa de Estudio. Segundo Año Medio. Santiago: MINEDUC.Google Scholar
  36. Muñoz, G., Jiménez, L., & Rupin, P. (2013). In F. Muñoz (Ed.), Texto Educación Matemática 2, Educación Media. Texto del estudiante. Edición especial para el Ministerio de Educación. Santiago: Ediciones SM Chile.Google Scholar
  37. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  38. National Research Council. (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum. Washington, DC: The National Academies Press.Google Scholar
  39. Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.Google Scholar
  40. Organisation for Economic Co-operation and Development. (2009). Take the test. Sample questions from OECD’s PISA assessments, OECD Publishing.Google Scholar
  41. Organisation for Economic Co-operation and Development. (2012). Connected minds: Technology and today’s learners, educational research and innovation. OECD Publishing. Scholar
  42. Organisation for Economic Co-operation and Development. (2014). PISA 2012 results: What students know and can do—student performance in mathematics, reading and science (revised ed., Vol. I, February 2014). Pisa: OECD Publishing. Scholar
  43. Ortiz, A., Reyes, C., Valenzuela, M., & Chandía, E. (2012). Matemática primer año de Enseñanza Media. Guía didáctica del docente. Santiago: McGraw-Hill Interamericana.Google Scholar
  44. Popkewitz, T. S. (2008). Cosmopolitanism and the age of school reform: Science, education, and making society by making the child. New York: Routledge.Google Scholar
  45. Prieto, G., & Velasco, A. D. (2010). Does spatial visualization ability improve after studying technical drawing? Quality and Quantity, 44(5), 1015–1024.CrossRefGoogle Scholar
  46. Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 215–234). Rotterdam: Sense.Google Scholar
  47. Rose, N. (1996). Governing “advanced” liberal democracies. In A. Barry, T. Osborne, & N. Rose (Eds.), Foucault and political reason (pp. 37–64). Chicago, IL: University of Chicago Press.Google Scholar
  48. Scott, D. (1995). Colonial governmentality. Social text., 43, 191–220.CrossRefGoogle Scholar
  49. Sinnett, S., Spence, C., & Soto-Faraco, S. (2007). Visual dominance and attention: The Colavita effect revisited. Perception and Psychophysics, 69(5), 673–686.CrossRefGoogle Scholar
  50. Skordoulis, C., Vitsas, T., Dafermos, V., & Koleza, E. (2009). The system of coordinates as an obstacle in understanding the concept of dimension. International Journal of Science and Mathematics Education, 7(2), 253–272. doi: 10.1007/s10763-008-9130-2.CrossRefGoogle Scholar
  51. Suppes, P. (1977). Is visual space Euclidean? Synthese, 35(4), 397–421.CrossRefGoogle Scholar
  52. Valero, P. (2011). Re-interpreting students’ interest in mathematics: Youth culture resisting Modern subjectification. In D. Di Paola & J. Díez-Palomar (Eds.), 63th Commission Internatinale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques (CIEAEM): Facilitating access and participation: mathematical practices inside and outside the classroom. Quaderni di Ricerca in Didattica (Mathematics) (pp. 72–83). Spain: Barcelona.Google Scholar
  53. Valero, P., & García, G. (2014). Matemáticas escolares y el gobierno del sujeto moderno (School mathematics and the governing of the Modern subject). Bolema: Boletim de Educação Matemática, 28(49), 491–515. doi: Scholar
  54. Valero, P., García, G., Camelo, F., Mancera, G., & Romero, J. (2012). Mathematics education and the dignity of being: Original research. Pythagoras, 33(2), 1–9.CrossRefGoogle Scholar
  55. Valero, P., & Knijnik, G. (2015). Governing the modern, neoliberal child through ICT research in mathematics education. For the Learning of Mathematics, 35(2), 34–39.Google Scholar
  56. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2014). Finding the missing piece: Blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7–13.CrossRefGoogle Scholar
  57. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.CrossRefGoogle Scholar
  58. Zañartu, M., Darrigrandi, F., & Ramos, M. (2012). Matemática segundo año de Enseñanza Media. Guía didáctica del docente. Santiago: Santillana.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceAalborg UniversityAalborgDenmark
  2. 2.Faculty of ScienceStockholm UniversityStockholmSweden

Personalised recommendations