Advertisement

Welcome to the Jungle. An Orientation Guide to the Disorder of Mathematics Education

  • Hauke Straehler-PohlEmail author
  • Alexandre Pais
  • Nina Bohlmann
Chapter

Abstract

This introductory chapter builds on the assumption that the sociopolitical dimensions of mathematics education have been gradually recognised as an important part of mathematics education research. We problematise the process of institutionalising these dimensions as a firm strand of mathematics education research just as “philosophy of mathematics (education)”, “history of mathematics (education)”, “modelling and applications” or “geometry”. This leads us to identify and conceptualise “disorder” as the foundation of the sociopolitical dimensions and accordingly to propose a shift from focussing diversity towards focussing disorder. Finally, we illustrate how the chapters of this book contribute to such an alternative self-conception of sociopolitical research in mathematics education.

Keywords

Mathematics Education School Mathematic Mathematics Education Research Symbolic Order Sociopolitical Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alrø, H., Ravn, O., & Valero, P. (Eds.). (2010). Critical mathematics education: Past, present, and future. Festschrift for Ole Skovsmose. Rotterdam: Sense.Google Scholar
  2. Atweh, B., Graven, M., Secada, W., & Valero, P. (Eds.). (2011). Mapping equity and quality in mathematics education. Dodrecht: Springer.Google Scholar
  3. Berger, M., Brodie, K., Frith, V., & le Roux, K. (Eds.). (2013). Proceedings of the Seventh International Mathematics Education and Society Conference (Vol. 1–2). Cape Town: Hansa.Google Scholar
  4. Bishop, A., Tan, H., & Barkatsas, T. (Eds.). (2015). Diversity in mathematics education. Towards inclusive practices. Cham: Springer.Google Scholar
  5. Black, L., Mendick, H., & Solomon, Y. (Eds.). (2009). Mathematical relationships in education: Identities and participation. New York: Routledge.Google Scholar
  6. Bloor, D. (1976). Knowledge and social imagery. London: Routledge and Kegan Paul.Google Scholar
  7. Bourdieu, P. (2001). Science of science and reflexivity. Chicago: University of Chicago Press.Google Scholar
  8. T. Brown & M. Walshaw (Eds.). (2012). Special issue: Mathematics education and contemporary theory. Educational Studies in Mathematics, 80(1–2).Google Scholar
  9. T. Brown, J. Williams & Y. Solomon (Eds.). (2016). Special issue: Mathematics education and contemporary theory. Educational Studies in Mathematics.Google Scholar
  10. Clarkson, P., & Presmeg, N. (Eds.). (2008). Critical issues in mathematics education. New York: Springer.Google Scholar
  11. Clements, M. A. K., Bishop, A., Keitel-Kreidt, C., Kilpatrick, J., & Leung, F. K.-S. (Eds.). (2013). Third international handbook of mathematics education. New York: Springer.Google Scholar
  12. de Freitas, E., & Nolan, K. (Eds.). (2008). Opening the research text: Critical insights and in(ter)ventions into mathematics education. New York: Springer.Google Scholar
  13. Deleuze, G. (1993). The fold: Leibnitz and the Baroque. Minneapolis, MN: University of Minnesota Press.Google Scholar
  14. Forgasz, H., & Rivera, F. (Eds.). (2012). Towards equity in mathematics education. Gender, culture, and diversity. Heidelberg: Springer.Google Scholar
  15. Foucault, M. (2009/1966). The order of things: An archaeology of the human sciences. London: Routledge.Google Scholar
  16. Gates, P., & Vistro-Yu, C. (2003). Is mathematics for all? In A. Bishop, M. A. K. Clements, C. Keitel-Kreidt, J. Kilpatrick, & F. K.-S. Leung (Eds.), Second international handbook of mathematics education (pp. 31–74). Dordrecht: Kluwer.CrossRefGoogle Scholar
  17. Gellert, U., Jablonka, E., & Morgan, C. (Eds.). (2010). Proceedings of the Sixth International Mathematics Education and Society Conference (Vol. 1–2). Berlin: Freie Universität Berlin.Google Scholar
  18. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1), 173–198.CrossRefGoogle Scholar
  19. Guns’n’Roses. (1987). “Welcome to the jungle.” Appetite for Destruction. Geffen. MCD.Google Scholar
  20. Gutiérrez, R. (2013a). The sociopolitical turn in mathematics education. Journal for Research in Mathematics Education, 44(1), 37–68.CrossRefGoogle Scholar
  21. R. Gutiérrez (Ed.). (2013b). JRME equity special issue. Journal for Research in Mathematics Education, 44(1).Google Scholar
  22. Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. London: Taylor & Francis.Google Scholar
  23. Herbel-Eisenmann, B., Choppin, J., Wagner, D., & Pimm, D. (Eds.). (2012). Equity in discourse for mathematics education. Theories, practices, and policies. Dodrecht: Springer.Google Scholar
  24. Jablonka, E., & Bergsten, C. (2010). Theorising in mathematics education research: Differences in modes and quality. Nordic Studies in Mathematics Education, 15(1), 25–52.Google Scholar
  25. Jablonka, E., Wagner, D., & Walshaw, M. (2013). Theories for studying social, political and cultural dimensions of mathematics education. In A. Bishop, M. A. K. Clements, C. Keitel-Kreidt, J. Kilpatrick, & F. K.-S. Leung (Eds.), Third international handbook of mathematics education (pp. 41–67). New York: Springer.Google Scholar
  26. T. Meaney & P. Valero (Eds.). (2014). Socioeconomic influence on mathematical achievement: What is visible and what is neglected. ZDM: The International Journal of Mathematics Education, 46(7).Google Scholar
  27. C. Morgan & C. Kanes (Eds.). (2014). Special issue: Social theory and research in mathematics education. Educational Studies in Mathematics, 87(2).Google Scholar
  28. Mukhopadhyay, S., & Greer, B. (Eds.). (2015). Proceedings of the Eighth International Mathematics Education and Society Conference (Vol. 1–3). Portland: Ooligan.Google Scholar
  29. Pais, A. (2012). A critical approach to equity in mathematics education. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education. Rotterdam: Sense Publishers.Google Scholar
  30. Pfaller, R. (2011). Wofür es sich zu leben lohnt: Elemente materialistischer Philosophie. Frankfurt am Main: Fischer.Google Scholar
  31. Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  32. Skovsmose, O., & Greer, B. (Eds.). (2012). Opening the cage: Critique and politics of mathematics education. Rotterdam: Sense.Google Scholar
  33. Stinson, D. W., & Bullock, E. C. (2012). Critical postmodern theory in mathematics education research: A praxis of uncertainty. Educational Studies in Mathematics, 80(1), 41–55.CrossRefGoogle Scholar
  34. Valero, P. (2004). Socio-political perspectives on mathematics education. In P. Valero & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (pp. 5–24). Boston: Kluwer.CrossRefGoogle Scholar
  35. Valero, P. (2015). Re-interpreting students’ interest in mathematics: Youth culture and subjectivity. In U. Gellert, J. Giménez-Rodriguz, C. Hahn, & S. Kafoussi (Eds.), Educational paths to mathematics (pp. 15–32). Heidelberg: Springer.CrossRefGoogle Scholar
  36. Valero, P., & Stentoft, D. (2010). The “post” move of critical mathematics education. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical mathematics education: Past, present, and future. Festschrift for Ole Skovsmose (pp. 183–196). Rotterdam: Sense Publishers.Google Scholar
  37. Valero, P., & Zevenbergen, R. (Eds.). (2004). Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology. Boston: Kluwer.Google Scholar
  38. Walshaw, M. (Ed.). (2004). Mathematics education within the postmodern. Greenwich, CT: Information Age.Google Scholar
  39. Walt Disney Productions. (1967). The jungle book. Dir. Wolfgang Reitherman.Google Scholar
  40. Žižek, S. (2000). The Ticklish subject: The absent centre of political ontology. London: Verso.Google Scholar
  41. Žižek, S. (2009). The parallax view. Cambridge: MIT Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Hauke Straehler-Pohl
    • 1
    Email author
  • Alexandre Pais
    • 2
  • Nina Bohlmann
    • 1
  1. 1.Fachbereich Erziehungswissenschaft und PsychologieFreie Universität BerlinBerlinGermany
  2. 2.Education and Social Research InstituteManchester Metropolitan UniversityManchesterUK

Personalised recommendations