Advertisement

Neurocognitive Effects of tDCS in the Healthy Brain

  • Siobhán HartyEmail author
  • Anna-Katharine Brem
  • Roi Cohen Kadosh
Chapter

Abstract

This chapter provides an overview of the literature concerning the effects of tDCS on high-level cognitive functions in young healthy adults. tDCS has been found to modulate a multitude of components of cognition, but here we place a particular focus on studies that have examined working memory, attention, language, numerical cognition, general learning and memory. We additionally devote latter portions of the chapter to evaluating two other pertinent topics: the neurocognitive effects of tDCS in the healthy older brain and individual differences in the context of tDCS outcomes. Based on the studies reviewed, we conclude that tDCS holds substantial promise as a tool for exploring novel theoretical hypotheses, as well as for improving cognitive functions in both young and older healthy adults. However, the coherence of the evidence base and the translational potential of these findings is currently constrained by a number of factors, including pervasive inter-individual differences in response to tDCS, heterogeneity of tDCS protocols across studies and inadequate knowledge about the longevity of the effects.

Keywords

Transcranial direct current stimulation Cognition Working memory Attention Language Memory Cognitive enhancement Numerical performance 

References

  1. 1.
    Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TD, Calhoun VD, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.PubMedCrossRefGoogle Scholar
  3. 3.
    Baddeley A. Working memory. London: Oxford University Press; 1986.Google Scholar
  4. 4.
    Smith EE, Jonides J. Working memory: a view from neuroimaging. Cogn Psychol. 1997;33(1):5–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Owen AM, McMillan KM, Laird AR, Bullmore E. N-Back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Barch DM, Sheline YI, Csernansky JG, Snyder AZ. Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biol Psychiatry. 2003;53(5):376–84.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Esposito M, Postle BR, Rypma B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res. 2000;133(1):3–11.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M. The neural basis of the central executive system of working memory. Nature. 1995;378(6554):279–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Mansouri FA, Tanaka K, Buckley MJ. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci. 2009;10(2):141–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Olson IR, Berryhill M. Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiol Learn Mem. 2009;91(2):155–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Mulquiney PG, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):2384–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pachella RG, Pew RW. Speed-accuracy tradeoff in reaction time: effect of discrete criterion times. J Exp Psychol. 1968;76(1):19.CrossRefGoogle Scholar
  15. 15.
    Ohn SH, Park C-I, Yoo W-K, Ko M-H, Choi KP, Kim G-M, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19(1):43–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011;4(2):84–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin DM, Liu R, Alonzo A, Green M, Loo CK. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp Brain Res. 2014;232(10):3345–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Gill J, Shah-Basak PP, Hamilton R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015;8(2):253–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Mylius V, Jung M, Menzler K, Haag A, Khader P, Oertel W, et al. Effects of transcranial direct current stimulation on pain perception and working memory. Eur J Pain. 2012;16(7):974–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Meiron O, Lavidor M. Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender. Brain Stimul. 2013;6(3):440–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Zaehle T, Sandmann P, Thorne JD, Jäncke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci. 2002;15(8):1395–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Klimesch W, Doppelmayr M, Roehm D, Poellhuber D, Stadler W. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neurosci Lett. 2000;284(1):97–100.PubMedCrossRefGoogle Scholar
  24. 24.
    Richmond LL, Wolk D, Chein J, Olson IR. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. J Cogn Neurosci. 2014.Google Scholar
  25. 25.
    Martin DM, Liu R, Alonzo A, Green M, Player MJ, Sachdev P, et al. Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. Int J Neuropsychopharmacol. 2013;16(9):1927–36.PubMedCrossRefGoogle Scholar
  26. 26.
    A-K B, K R, A P-L. Learning and memory. Handb Clin Neurol. 2013;116:693.CrossRefGoogle Scholar
  27. 27.
    Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Brunoni AR, Vanderhasselt M-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 2014;86:1–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9(2):197–208.PubMedCrossRefGoogle Scholar
  30. 30.
    Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Stone DB, Tesche CD. Transcranial direct current stimulation modulates shifts in global/local attention. Neuroreport. 2009;20(12):1115–9.PubMedGoogle Scholar
  32. 32.
    Kinsbourne M. Hemi-inattention and hemispheric rivalry. In: Weinstein EA, Friedland RP, editors. Hemi-inattention hemispheric specialization: vol 18. Advances in neurology. New York, NY: Raven; 1977. p. 18.Google Scholar
  33. 33.
    Bolognini N, Olgiati E, Rossetti A, Maravita A. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci. 2010;31(10):1800–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Roy LB, Sparing R, Fink GR, Hesse MD. Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia. 2015;74:96–107.PubMedCrossRefGoogle Scholar
  35. 35.
    Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 2014;85:909–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Helton WS, Warm JS, Tripp LD, Matthews G, Parasuraman R, Hancock PA. Cerebral lateralization of vigilance: a function of task difficulty. Neuropsychologia. 2010;48(6):1683–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Warm JS, Matthews G, Finomore Jr VS. Vigilance, workload, and stress. Perform Under Stress. 2008;2008:115–41.Google Scholar
  38. 38.
    Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage. 2005;26(2):471–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage. 2015.Google Scholar
  40. 40.
    Gaillard WD, Hertz-Pannier L, Mott SH, Barnett AS, LeBihan D, Theodore WH. Functional anatomy of cognitive development fMRI of verbal fluency in children and adults. Neurology. 2000;54(1):180.PubMedCrossRefGoogle Scholar
  41. 41.
    Salmelin R, Hari R, Lounasmaa O, Sams M. Dynamics of brain activation during picture naming. Nature. 1994;368(6470):463–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Iyer M, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann E. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR. Enhancing language performance with non-invasive brain stimulation—a transcranial direct current stimulation study in healthy humans. Neuropsychologia. 2008;46(1):261–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C. Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res. 2010;208(2):311–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Indefrey P, Levelt WJ. The spatial and temporal signatures of word production components. Cognition. 2004;92(1):101–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31(43):15284–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Meinzer M, Lindenberg R, Antonenko D, Flaisch T, Flöel A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J Neurosci. 2013;33(30):12470–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Najib U, Pascual-Leone A. Paradoxical functional facilitation with noninvasive brain stimulation. Paradoxical Brain. Cambridge: Cambridge University Press; 2011. p. 234–60.Google Scholar
  50. 50.
    Wirth M, Rahman RA, Kuenecke J, Koenig T, Horn H, Sommer W, et al. Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia. 2011;49(14):3989–98.PubMedCrossRefGoogle Scholar
  51. 51.
    Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 2010;121(12):2165–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Sela T, Lavidor M. High-level cognitive functions in healthy subjects. In: Sela T, Lavidor M, editors. The stimulated brain. New York, NY: Elsevier; 2014. p. 299–329.CrossRefGoogle Scholar
  53. 53.
    Holland R, Leff AP, Josephs O, Galea JM, Desikan M, Price CJ, et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol. 2011;21(16):1403–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fiori V, Cipollari S, Caltagirone C, Marangolo P. ‘If two witches would watch two watches, which witch would watch which watch?’ tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience. 2014;256:195–200.PubMedCrossRefGoogle Scholar
  55. 55.
    De Vries MH, Barth AC, Maiworm S, Knecht S, Zwitserlood P, Flöel A. Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci. 2010;22(11):2427–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Meinzer M, Antonenko D, Lindenberg R, Hetzer S, Ulm L, Avirame K, et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci. 2012;32(5):1859–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen Kadosh R, Soskic S, Iuculano T, Kanai R, Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016–20.Google Scholar
  58. 58.
    Vannorsdall TD, Schretlen DJ, Andrejczuk M, Ledoux K, Bosley LV, Weaver JR, et al. Altering automatic verbal processes with transcranial direct current stimulation. Front Psychiatry. 2012;3:73.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44(12):2547–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Butterworth B, Kovas Y. Understanding neurocognitive developmental disorders can improve education for all. Science. 2013;340(6130):300–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Beddington J, Cooper CL, Field J, Goswami U, Huppert FA, Jenkins R, et al. The mental wealth of nations. Nature. 2008;455(7216):1057–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Ansari D. Effects of development and enculturation on number representation in the brain. Nat Rev Neurosci. 2008;9(4):278–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Chochon F, Cohen L, Van De Moortele P, Dehaene S. Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci. 1999;11(6):617–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen Kadosh R, Cohen Kadosh K, Schuhmann T, Kaas A, Goebel R, Henik A, et al. Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr Biol. 2007;17(8):689–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science. 1999;284(5416):970–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20(3-6):487–506.PubMedCrossRefGoogle Scholar
  67. 67.
    Sandrini M, Rusconi E. A brain for numbers. Cortex. 2009;45(7):796–803.PubMedCrossRefGoogle Scholar
  68. 68.
    Mussolin C, De Volder A, Grandin C, Schlögel X, Nassogne M-C, Noël M-P. Neural correlates of symbolic number comparison in developmental dyscalculia. J Cogn Neurosci. 2010;22(5):860–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Aydin K, Ucar A, Oguz K, Okur O, Agayev A, Unal Z, et al. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study. Am J Neuroradiol. 2007;28(10):1859–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Iuculano T, Cohen Kadosh R. The mental cost of cognitive enhancement. J Neurosci. 2013;33(10):4482–6.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sarkar A, Dowker A, Cohen Kadosh R. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J Neurosci. 2014;34(50):16605–10.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Clemens B, Jung S, Zvyagintsev M, Domahs F, Willmes K. Modulating arithmetic fact retrieval: a single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia. 2013;51(7):1279–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Kasahara K, Tanaka S, Hanakawa T, Senoo A, Honda M. Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task. Neurosci Lett. 2013;545:86–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Hauser TU, Rotzer S, Grabner RH, Mérillat S, Jäncke L. Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS). Front Hum Neurosci. 2013;7:244.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    James W. Principles of pscyhology. New York, NY: Henry Holt; 1890.CrossRefGoogle Scholar
  76. 76.
    Baddeley AD, Hitch G. Working memory. In: Bower GA, editor. Recent advances in learning and motivation. New York, NY: Academic; 1974. p. 47–90.Google Scholar
  77. 77.
    Wheeler ME, Petersen SE, Buckner RL. Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc Natl Acad Sci U S A. 2000;97(20):11125–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86.PubMedCrossRefGoogle Scholar
  80. 80.
    McGaugh JL. Memory – a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Baddeley AD. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Jonides J, Lewis RL, Nee DE, Lustig CA, Berman MG, Moore KS. The mind and brain of short-term memory. Annu Rev Psychol. 2008;59:193–224.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hannula DE, Tranel D, Cohen NJ. The long and the short of it: relational memory impairments in amnesia, even at short lags. J Neurosci. 2006;26(32):8352–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Olson IR, Moore KS, Stark M, Chatterjee A. Visual working memory is impaired when the medial temporal lobe is damaged. J Cogn Neurosci. 2006;18(7):1087–97.PubMedCrossRefGoogle Scholar
  85. 85.
    Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M. Working memory for conjunctions relies on the medial temporal lobe. J Neurosci. 2006;26(17):4596–601.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ranganath C, D’Esposito M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron. 2001;31(5):865–73.PubMedCrossRefGoogle Scholar
  87. 87.
    Gladwin TE, den Uyl TE, Fregni FF, Wiers RW. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci Lett. 2012;512(1):33–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Marshall L, Mölle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neurosci. 2005;6:23.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Marshall L, Mölle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24(44):9985–92.PubMedCrossRefGoogle Scholar
  90. 90.
    Berryhill ME, Wencil EB, Branch Coslett H, Olson IR. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett. 2010;479(3):312–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Heimrath K, Sandmann P, Becke A, Müller NG, Zaehle T. Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Front Psychiatry. 2012;3:56.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29(2-3):169–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Javadi AH, Cheng P, Walsh V. Short duration transcranial direct current stimulation (tDCS) modulates verbal memory. Brain Stimulat [Internet]. 2011. http://www.ncbi.nlm.nih.gov/pubmed/21962975. Accessed 26 Aug 2012.
  95. 95.
    Javadi AH, Walsh V. Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimul. 2012;5(3):231–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia. 2004;42(1):113–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Zwissler B, Sperber C, Aigeldinger S, Schindler S, Kissler J, Plewnia C. Shaping memory accuracy by left prefrontal transcranial direct current stimulation. J Neurosci. 2014;34(11):4022–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Elmer S, Burkard M, Renz B, Meyer M, Jancke L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct (BBF). 2005;5:29.Google Scholar
  99. 99.
    Hammer A, Mohammadi B, Schmicker M, Saliger S, Münte TF. Errorless and errorful learning modulated by transcranial direct current stimulation. BMC Neurosci. 2011;12:72.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Vines BW, Schnider NM, Schlaug G. Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport. 2006;17(10):1047–50.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bullard LM, Browning ES, Clark VP, Coffman BA, Garcia CM, Jung RE, et al. Transcranial direct current stimulation’s effect on novice versus experienced learning. Exp Brain Res. 2011;213(1):9–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Jones KT, Gözenman F, Berryhill ME. Enhanced long-term memory encoding after parietal neurostimulation. Exp Brain Res. 2014;232(12):4043–54.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Boggio PS, Fregni F, Valasek C, Ellwood S, Chi R, Gallate J, et al. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS One. 2009;4(3), e4959.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chi RP, Fregni F, Snyder AW. Visual memory improved by non-invasive brain stimulation. Brain Res. 2010;1353:168–75.PubMedCrossRefGoogle Scholar
  105. 105.
    Jacobson L, Goren N, Lavidor M, Levy DA. Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory. Brain Res. 2012;1439:66–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Kirov R, Weiss C, Siebner HR, Born J, Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci U S A. 2009;106(36):15460–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Penolazzi B, Di Domenico A, Marzoli D, Mammarella N, Fairfield B, Franciotti R, et al. Effects of transcranial direct current stimulation on episodic memory related to emotional visual stimuli. PLoS One. 2010;5(5), e10623.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pergolizzi D, Chua EF. Transcranial direct current stimulation (tDCS) of the parietal cortex leads to increased false recognition. Neuropsychologia. 2015;66:88–98.PubMedCrossRefGoogle Scholar
  109. 109.
    Pisoni A, Turi Z, Raithel A, Ambrus GG, Alekseichuk I, Schacht A, et al. Separating recognition processes of declarative memory via anodal tDCS: boosting old item recognition by temporal and new item detection by parietal stimulation. PLoS One. 2015;10(3), e0123085.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ross LA, McCoy D, Coslett HB, Olson IR, Wolk DA. Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Front Aging Neurosci. 2011;3:16.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17(1):85–100.PubMedCrossRefGoogle Scholar
  112. 112.
    Boggio PS, Campanhã C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci. 2010;31(3):593–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007;27(46):12500–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Fertonani A, Brambilla M, Cotelli M, Miniussi C. The timing of cognitive plasticity in physiological aging: a tDCS study of naming. Front Aging Neurosci. 2014;6:131.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012;521(2):148–51.PubMedCrossRefGoogle Scholar
  116. 116.
    Flöel A, Suttorp W, Kohl O, Kürten J, Lohmann H, Breitenstein C, et al. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2012;33(8):1682–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Harty S, Robertson IH, Miniussi C, Sheehy OC, Devine CA, McCreery S, et al. Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. J Neurosci. 2014;34(10):3646–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Manor B, Zhou J, Jor’dan A, Zhang J, Fang J, Pascual-Leone A. Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. J Cogn Neurosci. 2016;28(2):275–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Park S-H, Seo J-H, Kim Y-H, Ko M-H. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014;25(2):122–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Jones KT, Stephens JA, Alam M, Bikson M, Berryhill ME. Longitudinal neurostimulation in older adults improves working memory. PLoS One. 2015;10(4), e0121904.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Rossi S, Miniussi C, Pasqualetti P, Babiloni C, Rossini PM, Cappa SF. Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study. J Neurosci. 2004;24(36):7939–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Beauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, Saad ZS, et al. The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging. PLoS One. 2011;6(9), e24981.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lockhart SN, DeCarli C. Structural imaging measures of brain aging. Neuropsychol Rev. 2014;24(3):271–89.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chew T, Ho K-A, Loo CK. Inter-and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 2015;8(6):1130–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Mathys C, Loui P, Zheng X, Schlaug G. Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Front Psychol. 2010;1:193.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Schambra HM, Abe M, Luckenbaugh DA, Reis J, Krakauer JW, Cohen LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol. 2011;106(2):652–61.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Benwell CS, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65.PubMedCrossRefGoogle Scholar
  128. 128.
    Blumberg EJ, Peterson MS, Parasuraman R. Enhancing multiple object tracking performance with noninvasive brain stimulation: a causal role for the anterior intraparietal sulcus. Front Syst Neurosci. 2015;9.Google Scholar
  129. 129.
    Foroughi CK, Blumberg EJ, Parasuraman R. Activation and inhibition of posterior parietal cortex have bi-directional effects on spatial errors following interruptions. Front Syst Neurosci. 2015;8:245.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hsu T-Y, Tseng P, Liang W-K, Cheng S-K, Juan C-H. Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage. 2014;98:306–13.PubMedCrossRefGoogle Scholar
  131. 131.
    Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Front Psychiatry. 2012;3:81.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Liang W-K, Lo M-T, Yang AC, Peng C-K, Cheng S-K, Tseng P, et al. Revealing the brain’s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. Neuroimage. 2014;90:218–34.PubMedCrossRefGoogle Scholar
  133. 133.
    London RE, Slagter HA. Effects of transcranial direct current stimulation over left dorsolateral pFC on the attentional blink depend on individual baseline performance. J Cogn Neurosci. 2015.Google Scholar
  134. 134.
    Tseng P, Hsu T-Y, Chang C-F, Tzeng OJ, Hung DL, Muggleton NG, et al. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci. 2012;32(31):10554–61.PubMedCrossRefGoogle Scholar
  135. 135.
    Learmonth G, Thut G, Benwell CS, Harvey M. The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia. 2015.Google Scholar
  136. 136.
    Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.PubMedCrossRefGoogle Scholar
  137. 137.
    Giglia G, Mattaliano P, Puma A, Rizzo S, Fierro B, Brighina F. Neglect-like effects induced by tDCS modulation of posterior parietal cortices in healthy subjects. Brain Stimul. 2011;4(4):294–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Rosso C, Valabregue R, Arbizu C, Ferrieux S, Vargas P, Humbert F, et al. Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimul. 2014;7(1):122–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Born J, Rasch B, Gais S. Sleep to remember. Neuroscientist. 2006;12(5):410–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Meinzer M, Jähnigen S, Copland DA, Darkow R, Grittner U, Avirame K, et al. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex. 2014;50:137–47.PubMedCrossRefGoogle Scholar
  141. 141.
    Plewnia C, Zwissler B, Längst I, Maurer B, Giel K, Krüger R. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex. 2013;49(7):1801–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Nieratschker V, Kiefer C, Giel K, Krüger R, Plewnia C. The COMT val/met polymorphism modulates effects of tDCS on response inhibition. Brain Stimul. 2015;8(2):283–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Aguilera M, Barrantes-Vidal N, Arias B, Moya J, Villa H, Ibanez M, et al. Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. Am J Med Genet B Neuropsychiatr Genet. 2008;147(6):898–902.CrossRefGoogle Scholar
  144. 144.
    Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69(12):e113–25.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of l-dopa on human motor cortex plasticity. J Physiol. 2010;588(18):3415–24.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kim J-H, Kim D-W, Chang WH, Kim Y-H, Kim K, Im C-H. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014;564:6–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19(10):2720–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Stagg C, Jayaram G, Pastor D, Kincses Z, Matthews P, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800–4.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Chaieb L, Antal A, Paulus W. Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis Neurosci. 2008;25(01):77–81.PubMedCrossRefGoogle Scholar
  150. 150.
    Kuo M-F, Paulus W, Nitsche MA. Sex differences in cortical neuroplasticity in humans. Neuroreport. 2006;17(16):1703–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Inghilleri M, Conte A, Curra A, Frasca V, Lorenzano C, Berardelli A. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin Neurophysiol. 2004;115(5):1063–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Sale MV, Ridding MC, Nordstrom MA. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res. 2007;181(4):615–26.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM. Effects of ovarian hormones on human cortical excitability. Ann Neurol. 2002;51(5):599–603.PubMedCrossRefGoogle Scholar
  154. 154.
    Smith M, Keel J, Greenberg B, Adams L, Schmidt P, Rubinow D, et al. Menstrual cycle effects on cortical excitability. Neurology. 1999;53(9):2069.PubMedCrossRefGoogle Scholar
  155. 155.
    Krause B, Cohen Kadosh R. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 2014;8:25.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 2013;6(4):683–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage. 2015;109:140–50.PubMedCrossRefGoogle Scholar
  158. 158.
    Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines. NeuroImage Clin. 2013;2:759–66.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Shahid S, Wen P, Ahfock T. Effects of model complexity and tissue anisotropic conductivity on cortical modulation during transcranial direct current stimulation. IET Sci Meas Technol. 2012;6(6):464–73.CrossRefGoogle Scholar
  160. 160.
    Russell MJ, Goodman T, Pierson R, Shepherd S, Wang Q, Groshong B, et al. Individual differences in transcranial electrical stimulation current density. J Biomed Res. 2013;27(6):495.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Arlotti M, Rahman A, Minhas P, Bikson M. Axon terminal polarization induced by weak uniform DC electric fields: a modeling study. IEEE. 2012;2012:4575–8.Google Scholar
  162. 162.
    Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry. 2012;3:91.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Halko M, Datta A, Plow E, Scaturro J, Bikson M, Merabet LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage. 2011;57(3):885–91.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sandrini M, Fertonani A, Cohen LG, Miniussi C. Double dissociation of working memory load effectsinduced by bilateral parietal modulation. Neuropsychologia. 2012;50(3):396–402.Google Scholar
  165. 165.
    Hoy KE, Emonson MR, Arnold SL, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Testing the limits: Investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia. 2013;51(9):1777–84.Google Scholar
  166. 166.
    Sparing R, Thimm M, Hesse M, Küst J, Karbe H, Fink G. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain. 2009;132(11):3011–20.Google Scholar
  167. 167.
    Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention.BMC Neurosci. 2012;13(1):1.Google Scholar
  168. 168.
    Artemenko C, Moeller K, Huber S, Klein E. Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Front Hum Neurosci. 2015;9.Google Scholar
  169. 169.
    Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):1415–22.Google Scholar
  170. 170.
    Marshall L, Kirov R, Brade J, Mölle M, Born J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PloS One. 2011;6(2):e16905.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Siobhán Harty
    • 1
    Email author
  • Anna-Katharine Brem
    • 1
  • Roi Cohen Kadosh
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations