A New Solver for the Minimum Weighted Vertex Cover Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9676)

Abstract

Given a vertex-weighted graph \(G = \langle V, E \rangle \), the minimum weighted vertex cover (MWVC) problem is to choose a subset of vertices with minimum total weight such that every edge in the graph has at least one of its endpoints chosen. While there are good solvers for the unweighted version of this NP-hard problem, the weighted version—i.e., the MWVC problem—remains understudied despite its common occurrence in many areas of AI—like combinatorial auctions, weighted constraint satisfaction, and probabilistic reasoning. In this paper, we present a new solver for the MWVC problem based on a novel reformulation to a series of SAT instances using a primal-dual approximation algorithm as a starting point. We show that our SAT-based MWVC solver (SBMS) significantly outperforms other methods.

References

  1. 1.
    Berkelaar, M., Eikland, K., Notebaert, P.: lp_solve 5.5 open source (mixed integer) linear programming software (2004). http://lpsolve.sourceforge.net/5.5/
  2. 2.
    Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Proceedings of the SAT Competition 2013. Department of Computer Science Series of Publications B, vol. B-2013-1, pp. 51–52 (2013)Google Scholar
  3. 3.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the number of actions. In: The Proceedings of the International Conference on Automated Planning and Scheduling, pp. 292–299 (2005)Google Scholar
  5. 5.
    Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for minimum vertex cover. J. Artif. Intell. Res. 46(1), 687–716 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)MATHGoogle Scholar
  9. 9.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Do, M.B., Benton, J., Briel, M.V.D., Kambhampati, S.: Planning with goal utility dependencies. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1872–1878 (2007)Google Scholar
  11. 11.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisfiability Boolean Model. Comput. 2, 1–26 (2006)MATHGoogle Scholar
  12. 12.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
  13. 13.
    Gurobi Optimization, I.: Gurobi optimizer reference manual (2015). http://www.gurobi.com
  14. 14.
    Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. American Mathematical Society, Boston (1996)MATHGoogle Scholar
  15. 15.
    Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 5(4), 1–8 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-\(\epsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Kolmogorov, V.: Primal-dual algorithm for convex Markov random fields. Technical report MSR-TR-2005-117, Microsoft Research (2005)Google Scholar
  19. 19.
    Kumar, T.K.S.: A framework for hybrid tractability results in boolean weighted constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 282–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (2008)Google Scholar
  21. 21.
    Li, C.M., Quan, Z.: Combining graph structure exploitation and propositional reasoning for the maximum clique problem. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, pp. 344–351 (2010)Google Scholar
  22. 22.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Proceedings of the International Conference on Theory and Applications of Satisfiability Testing, pp. 495–508 (2009)Google Scholar
  23. 23.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2717–2723 (2014)Google Scholar
  24. 24.
    Nelson, B., Kumar, T.K.S.: CircuitTSAT: a solver for large instances of the disjunctive temporal problem. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 232–239 (2008)Google Scholar
  25. 25.
    Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. Technical report T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland (2003)Google Scholar
  26. 26.
    Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex cover. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 412–426. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Global Optim. 37(1), 95–111 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Walsh, T.: SAT \(v\) CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations