Drug-Induced Tendon Disorders

  • Karsten Knobloch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 920)


Drug-induced tendon disorders are an often underestimated risk factor. The range from detrimental effects on the tendon include tendinopathy as well as potentially tendon rupture. As for today, four main drug classes have been reported to be associated with potentially deteriorated tendon properties: 1. Corticosteroids, 2. Chinolon antibiotics, 3. Aromatase inhbitors, 4. Statins as HMG-CoA-reductase inhibitors. Most often, the Achilles tendon is affected in terms of tendinopathy and/or subsequent tendon rupture. However, nearly every tendon of the entire body might be affected in a detrimental way by one or a combination of the aformentioned agents.


Tendon Corticosteroid Tendon rupture Statin Chinolon Aromatase inhibitor Treatment Adverse effect 


  1. 1.
    Kirchgesner T, Larbi A, Omoumi P, Malghem J, Zamali N, Manelfe J, Lecouvet F, Vande Berg B, Djebbar S, Dallaudiere B (2014) Drug-induced tendinopathy: from physiology to clinical applications. Joint Bone Spine 81(6):485–492CrossRefPubMedGoogle Scholar
  2. 2.
    Martin JR, Wilson CL, Mathews WH (1958) Bilateral rupture of the ligamenta patellae in a case of disseminated lupus erythematosus. Arthritis Rheum 1(6):548–552CrossRefPubMedGoogle Scholar
  3. 3.
    Twinning RH, Marcus WY, Garey JL (1964) Tendon rupture in systemic lupus erythematosus. JAMA 189:377–378CrossRefGoogle Scholar
  4. 4.
    Vallone G, Vittorio T (2014) Complete Achilles tendon rupture after local infiltration of corticosteroids in the treatment of deep retrocalcaneal bursitis. J Ultrasound 17(2):165–167CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Celli A (2015) Triceps tendon rupture: the knowledge acquired from the anatomy to the surgical repair. Musculoskleletal Surg 2015 May 10Google Scholar
  6. 6.
    Oh J, Jo L, Lee JI (2015) Do not rush to return to sports after trigger finger injection. Am J Phys Med Rehabil 94(4):e26–e30CrossRefPubMedGoogle Scholar
  7. 7.
    Boussakri H, Bouali A (2014) Subcutaneous rupture of the extensor pollicis longus tendon after corticosteroid injections for DeQuervain’s stenosing tenovaginitis. Case Rep Orthop 2014:934384PubMedPubMedCentralGoogle Scholar
  8. 8.
    Boussakri H, Bouali A (2014) Subcutaneous rupture of the extensor pollicis longus tendon after corticosteroid injections in DeQuervain stenosing tendovaginitis. Case Rep Orthop 2014:934384PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kearney RS, Parsons N, Metcalfe D, Costa ML (2015) Injection therapies for Achilles tendinopathy. Cochrane Database Syst Rev 5:CD010960PubMedGoogle Scholar
  10. 10.
    Muto T, Kokubu T, Mifune Y, Inui A, Harada Y, Yoshifumi, Takase F, Kuroda R, Kurosaka M (2014) Temporary inductions of matrix metalloprotease-3 (MMP3) expression and cell apoptosis are associated with tendon degeneration or rupture after corticosteroid injection. J Orthop Res 32(10):1297–1304CrossRefPubMedGoogle Scholar
  11. 11.
    Coombes BK, Bisset L, Vicenzino B (2010) Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet 376(9754):1751–1767. doi: 10.1016/S0140-6736(10)61160-9. Epub 2010 Oct 21CrossRefPubMedGoogle Scholar
  12. 12.
    Maman E, Yehuda C, Pritsch T, Morag G, Brosh T, Sharfman Z, Dolkart O (2015) Detrimentral effect of repeated and single subacromial corticosteroid injections on the intact and injured rotator cuff: a biomechanical and imaging study in rats. Am J Sports Med 2015 Jul 27Google Scholar
  13. 13.
    American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171(4):388–416CrossRefGoogle Scholar
  14. 14.
    Petersen W, Laprell H (1998) Insidious rupture of the Achilles tendon after ciprofloxacin-induced tendinopathy. A case report. Unfallchirurg 101(9):731–734CrossRefPubMedGoogle Scholar
  15. 15.
    Shimatsu K, Subramaniam S, Sim H, Aronowitz P (2014) Ciprofloxacin-induced tendinopathy of the gluteal tendons. J Gen Intern Med 29(11):1559–1562CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Juras V, Winhofer Y, Szomolanyi P, Vosshenrich J, Hager B, Wolf P, Weber M, Luger A, Trattnig S (2015) Multiparametric MR imaging depicts Glycosaminoglycan change in the Achilles tendon during ciprofloxacin administration in healthy men: initial observation. Radiology 275(3):763–771CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Olcay E, Beytemur O, Kaleagasioglu F, Gulmez T, Mutlu Z, Olgac V (2011) Oral toxicity of pefloxacin, norfloxacin, ofloxacin and ciprofloxacin: comparison of biomechanical and histopathological effects on Achilles tendon in rats. J Toxicol Sci 36(3):339–345CrossRefPubMedGoogle Scholar
  18. 18.
    Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ et al (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA. 17. J Natl Cancer Inst 97:1262–1271. [PubMed: 16145047]CrossRefPubMedGoogle Scholar
  19. 19.
    Winer EP, Hudis C, Burstein HJ, Wolff AC, Pritchard KI, Ingle JN et al (2005) American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004. J Clin Oncol 23:619–629. [PubMed: 15545664]CrossRefPubMedGoogle Scholar
  20. 20.
    Henry NL, Giles JT, Ang D, Mohan M, Dadabhoy D, Robarge J et al (2008) Prospective characterization of musculoskeletal symptoms in early stage breast cancer patients treated with aromatase inhibitors. Breast Cancer Res Treat 111:365–372. [PubMed: 17922185]CrossRefPubMedGoogle Scholar
  21. 21.
    Morales L, Pans S, Paridaens R, Westhovens R, Timmerman D, Verhaeghe J et al (2006) Debilitating musculoskeletal pain and stiffness with letrozole and exemestane: associated tenosynovial changes on magnetic resonance imaging. Breast Cancer Res Treat 104:87–91. [PubMed: 17061044]CrossRefPubMedGoogle Scholar
  22. 22.
    Lintermans A, Laenen A, Van Calster B et al (2013) Prospective study to assess fluid accumulation and tenosynovial changes in the aromatase inhibitor-induced musculoskeletal syndrome: 2-year-follow-up data. Ann Oncol 24(2):350–355CrossRefPubMedGoogle Scholar
  23. 23.
    Ly JQ, Bui-Mansfield LT (2004) Anatomy of and abnormalities associated with Kager’s fat Pad. AJR Am J Roentgenol 182:147–154CrossRefPubMedGoogle Scholar
  24. 24.
    Pingel J, Petersen MC, Fredberg U, Kjaer SG, Quistorff B, Langberg H, Hansen JB (2015) Inflammatory and metabolic alterations of the Kager’s fat pad in chronic Achilles tendinopathy. PLoS One 10(5):e0127811CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoffa A (1904) The influence of the adipose tissue with regard to the pathology of the knee joint. JAMA 43:795–796CrossRefGoogle Scholar
  26. 26.
    Magi M, Branca A, Bucca C, Langerame V (1991) Hoffa disease. Ital J Orthop Traumatol 17:211–216PubMedGoogle Scholar
  27. 27.
    Ioan-Facsinay A, Kloppenburg M (2013) An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis Res Ther 15:225CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM (2007) Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol (Baltimore, MD: 1950) 179:5483–5492Google Scholar
  29. 29.
    Gomez R, Lago F, Gomez-Reino J, Dieguez C, Gualillo O (2009) Adipokines in the skeleton: influence on cartilage function and joint degenerative diseases. J Mol Endocrinol 43:11–18. doi: 10.1677/JME-08-0131 CrossRefPubMedGoogle Scholar
  30. 30.
    Gaida JE, Alfredson L, Kiss ZS, Wilson AM, Alfredson H, Cook JL (2009) Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. Med Sci Sports Exerc 41(6):1194–1197CrossRefPubMedGoogle Scholar
  31. 31.
    Gaida JE, Alfredson H, Kiss ZS, Bass SL, Cook JL (2010) Asymptomatic Achilles tendon pathology is associated with a central fat distribution in men and a peripheral fat distribution in women: a cross sectional study of 298 individuals. BMC Musculoskelet Disord 11:41CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gaida JE, Ashe MC, Bass SL, Cook JL (2009) Is adiposity an under-recognized risk factor for tendinopathy? A systematic review. Arthritis Rheum 61(6):840–849CrossRefPubMedGoogle Scholar
  33. 33.
    Ho LT, Lin LY, Yang YH, Wu CK, Juang JJ, Wang YC, Tsai CT, Lai LP, Hwang JJ, Chiang FT, Lin JL, Chen PC (2015) Statin therapy lowers the risk of new-onset atrial fibrillation in patients with end-stage renal disease. Int J Cardiol 201:538–543CrossRefPubMedGoogle Scholar
  34. 34.
    Bhandari S, Gupta P, Quinn P, Sandhu J, Hakimi A, Jones D, Ng L (2015) Pleiotropic effects of statins in hypercholerolaemia: a prospective observational study using a lipoproteomic based approach. Lancet 2015;385 Suppl 1:S21Google Scholar
  35. 35.
    Thomsen LL, Laursen JO (2014) Spontaneous bilateral quadriceps tendon rupture in obese patient medicated with statin. Ugeskr Laeger 176:50PubMedGoogle Scholar
  36. 36.
    Kaleagasioglu F, Olcay E, Olgac V. Statin-induced calcific Achilles tendinopathy in rats: comparison of biomechanical and histopathological effects of simvastatin, atorvastatin and rosuvastatin. Knee Surg Sports Traumtol Arthrosc 2015 Aug 15Google Scholar
  37. 37.
    De Oliveira LP, Vieira CP, Guerra FD, Almeida MS, Pimentel ER (2015) Structural and biomechanical changes in Achilles tendon after chronic treatment with statins. Food Chem Toxicol 77:50–57CrossRefPubMedGoogle Scholar
  38. 38.
    Kuzma-Kuzniarska M, Cornell HR, Moneke MC, Carr AJ, Hulley PA (2015) Lovastatin-mediated changes in human tendon cells. J Cell Physiol 230(10):2543–2551CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kamio K, Liu XD, Sugiura H, Togo S, Kawasaki S, Wang X, Ahn Y, Hogaboam C, Rennard SI (2010) Statins inhibit matrix metalloproteinase release from human lung fibroblasts. Eur Respir J 35:637–646CrossRefPubMedGoogle Scholar
  40. 40.
    Izidoro-Toledo TC, Guimarães DA, Belo VA, Gerlach RF, Tanus-Santos JE (2011) Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn-Schmiedeberg’s Arch Pharmacol 383:547–554CrossRefGoogle Scholar
  41. 41.
    Schaafsma D, Dueck G, Ghavami S, Kroeker A, Mutawe MM, Hauff K, Xu FY, Mcneill KD, Unruh H, Hatch GM, Halayko AJ (2011) The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol 44:394–403CrossRefPubMedGoogle Scholar
  42. 42.
    Davis ME, Korn MA, Gumucio JP, Harning JA, Saripalli AL, Bedi A, Mendias CL (2015) Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J Shoulder Elbow Surg 24(2):280–287CrossRefPubMedGoogle Scholar
  43. 43.
    Dolkart O, Liron T, Chechik O, Somjen D, Brosh T, Maman E, Gabet Y (2014) Statins enhance rotator cuff healing by stimulating the COX2/PGE2/EP4 pathway: an in vivo and in vitro study. Am J Sports Med 42(12):2869–2876CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SportPraxis Prof. KnoblochHannoverGermany

Personalised recommendations