Computational Matter: Evolving Computational Functions in Nanoscale Materials

  • Hajo Broersma
  • Julian F. Miller
  • Stefano Nichele
Part of the Emergence, Complexity and Computation book series (ECC, volume 23)

Abstract

Natural evolution has been manipulating the properties of proteins for billions of years. This ‘design process’ is completely different to conventional human design which assembles well-understood smaller parts in a highly principled way. In evolution-in-materio (EIM), researchers use evolutionary algorithms to define configurations and magnitudes of physical variables (e.g. voltages) which are applied to material systems so that they carry out useful computation. One of the advantages of this is that artificial evolution can exploit physical effects that are either too complex to understand or hitherto unknown. An EU funded project in Unconventional Computation called NASCENCE: Nanoscale Engineering of Novel Computation using Evolution, has the aim to model, understand and exploit the behaviour of evolved configurations of nanosystems (e.g. networks of nanoparticles, carbon nanotubes, liquid crystals) to solve computational problems. The project showed that it is possible to use materials to help find solutions to a number of well-known computational problems (e.g. TSP, Bin-packing, Logic gates, etc.).

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 317662.

References

  1. 1.
    Ashby, W.R.: Design for a Brain, the origin of adaptive behaviour. Chapman & Hall Ltd., New York (1960)Google Scholar
  2. 2.
    Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
  3. 3.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays, vol. 4. AMC 10, p. 12 (2003)Google Scholar
  4. 4.
    Bose, S.K., Lawrence, C.P., Liu, Z., Makarenko, K.S., van Damme, R.M.J., Broersma, H.J., van der Wiel, W.G.: Evolution of a designless nanoparticle network into reconfigurable boolean logic. Nat. Nanotechnol. (2015). doi: 10.1038/NNANO.2015.207
  5. 5.
    Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project: nanoscale engineering for novel computation using evolution. Int. J. Unconv. Comput. 8(4), 313–317 (2012)Google Scholar
  6. 6.
    Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Syst. Res. 3, 19–33 (1993)Google Scholar
  7. 7.
    Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1918–1921 (2011)Google Scholar
  8. 8.
    Clegg, K., Miller, J., Massey, M., Petty, M.: Practical issues for configuring carbon nanotube composite materials for computation. In: Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 61–68 (2014)Google Scholar
  9. 9.
    Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Travelling salesman problem solved ‘in materio’ by evolved carbon nanotube device. In: Proceedings of bthe 13th International Conference on Parallel Problem Solving from Nature - PPSN XIII. LNCS, vol. 8672, pp. 692–701. Springer (2014)Google Scholar
  10. 10.
    Codd, E.F.: Cellular Automata. Academic Press, New York (1968)Google Scholar
  11. 11.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 46–93. PWS Publishing Co., Boston (1997)Google Scholar
  12. 12.
    Conrad, M.: The price of programmability. In: Herken, R. (ed.) The Universal Turing Machine A Half-Century Survey, pp. 285–307. Oxford University Press, Oxford (1988)Google Scholar
  13. 13.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)MathSciNetMATHGoogle Scholar
  14. 14.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)Google Scholar
  15. 15.
    Farstad, S.: Evolving cellular automata in-materio. In: Master Thesis Semester Project, Norwegian University of Science and Technology, Supervisor: Stefano Nichele, Gunnar Tufte. NTNU (2015)Google Scholar
  16. 16.
    Greenwood, G., Tyrrell, A.M.: Introduction to Evolvable Hardware. IEEE Press, New Jersy (2007)Google Scholar
  17. 17.
    Greff, K., van Damme, R., Koutník, J., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W., Schmidhuber, J.: Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks. Preprint (2015)Google Scholar
  18. 18.
    Harding, S., Miller, J.F.: Evolution in materio: a tone discriminator in liquid crystal. In: Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–1807 (2004)Google Scholar
  19. 19.
    Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J. Unconv. Comput. 3(4), 243–257 (2007)Google Scholar
  20. 20.
    Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of materials for computation. Int. J. Unconv. Comput. 4(2), 155–194 (2008)Google Scholar
  21. 21.
    Harding, S., Miller, J.F.: Evolution in materio. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3220–3233. Springer, Berlin (2009)Google Scholar
  22. 22.
    Higuchi, T., Liu, Y., Yao, X.: Evolvable hardware. Springer, New York (2006)Google Scholar
  23. 23.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  24. 24.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD. Technical Report 148, 34 (2001)Google Scholar
  25. 25.
    Korotkov, A.: Coulomb Blockade and Digital Single-Electron Devices, pp. 157–189. Blackwell, Oxford (1997)Google Scholar
  26. 26.
    Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic gate and circuit training on randomly dispersed carbon nanotubes. Int. J. Unconv. Comput. 10, 473–497 (2014)Google Scholar
  27. 27.
    Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  28. 28.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), p. 4 (2012)Google Scholar
  29. 29.
    Laketić, D., Tufte, G., Lykkebø, O.R., Nichele, S.: An explanation of computation - collective electrodynamics in blobs of carbon nanotubes. In: Proceedings of 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BIONETICS), IN PRESS. ACM (2015)Google Scholar
  30. 30.
    Laketić, D., Tufte, G., Nichele, S., Lykkebø, O.R.: Bringing colours to the black box - a novel approach to explaining materials for evolution-in-materio. In: Proceedings of 7th International Conference on Future Computational Technologies and Applications. XPS Press (2015)Google Scholar
  31. 31.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D: Nonlinear Phenom. 42(1), 12–37 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Layzell, P.: A new research tool for intrinsic hardware evolution. In: Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware. LNCS, vol. 1478, pp. 47–56 (1998)Google Scholar
  33. 33.
    Lykkebø, O., Tufte, G.: Comparison and evaluation of signal representations for a carbon nanotube computational device. In: Proceedings 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 54–60 (2014)Google Scholar
  34. 34.
    Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware and software platform for in materio evolution. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) Unconventional Computation and Natural Computation. LNCS, pp. 267–279. Springer International Publishing, Cham (2014)Google Scholar
  35. 35.
    Lykkebø, O., Nichele, S., Tufte, G.: An investigation of square waves for evolution in carbon nanotubes material. In: Proceedings of the 13th European Conference on Artificial Life (ECAL2015), pp. 503–510. MIT Press (2015)Google Scholar
  36. 36.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)MATHCrossRefGoogle Scholar
  37. 37.
    Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L., Petty, M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using disordered nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)CrossRefGoogle Scholar
  38. 38.
    Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings of NASA/DoD Evolvable Hardware Workshop, pp. 167–176 (2002)Google Scholar
  39. 39.
    Miller, J.F., Mohid, M.: Function optimization using Cartesian genetic programming. In: Genetic and Evolutionary Computation Conference(GECCO) Companion, pp. 147–148 (2013)Google Scholar
  40. 40.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Langdon W.B., et al. (eds.) Proceedings of EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer (2000)Google Scholar
  41. 41.
    Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evol. Intell. 7, 49–67 (2014)CrossRefGoogle Scholar
  42. 42.
    Mohid, M., Miller, J.: Evolving robot controllers using carbon nanotubes. In: Proceedings of the 13th European Conference on Artificial Life (ECAL2015), pp. 106–113. MIT Press (2015)Google Scholar
  43. 43.
    Mohid, M., Miller, J.: Solving even parity problems using carbon nanotubes. In: 2015 15th UK Workshop on Computational Intelligence (UKCI). IEEE Press (2015, in press)Google Scholar
  44. 44.
    Mohid, M., Miller, J.: Evolving solution to computational problems using carbon nanotubes. Int. J. Unconv. Comput. (2016, in press)Google Scholar
  45. 45.
    Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: a frequency classifier using materials. In: Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES): From Biology to Hardware, pp. 46–53. IEEE Press (2014)Google Scholar
  46. 46.
    Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: solving bin packing problems using materials. In: Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES): From Biology to Hardware, pp. 38–45. IEEE Press (2014)Google Scholar
  47. 47.
    Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: solving function optimization problems using materials. In: 2014 14th UK Workshop on Computational Intelligence (UKCI), pp. 1–8. IEEE Press (2014)Google Scholar
  48. 48.
    Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebø, O.R., Massey, M.K., Petty, M.C.: Evolution-in-materio: solving machine learning classification problems using materials. In: Proceedings of the 13th International Conference on Parallel Problem Solving from Nature - PPSN XIII. LNCS, vol. 8672, pp. 721–730. Springer (2014)Google Scholar
  49. 49.
    Mohid, M., Miller, J., Harding, S., Tufte, G., Massey, M., Petty, M.: Evolution-in-materio: Solving computational problems using carbon nanotube-polymer composites. Soft Comput. (2016, in press)Google Scholar
  50. 50.
    Nagel, L., Pederson, D.: Simulation program with integrated circuit emphasis. Memorandum ERL-M382, University of California, Berkeley (1973)Google Scholar
  51. 51.
    Nelder, A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MATHCrossRefGoogle Scholar
  52. 52.
    Neumann, J.v.: First draft of a report on the EDVAC. Technical report, University of Pennsylvania (1945)Google Scholar
  53. 53.
    Nichele, S., Laketić, D., Lykkebø, O.R., Tufte, G.: Is there chaos in blobs of carbon nanotubes used to perform computation? In: Proceedings of 7th International Conference on Future Computational Technologies and Applications. XPS Press (2015)Google Scholar
  54. 54.
    Nichele, S., Lykkebø, O.R., Tufte, G.: An investigation of underlying physical properties exploited by evolution in nanotubes materials. In: Proceedings of 2015 IEEE International Conference on Evolvable Systems. IEEE Symposium Series on Computational Intelligence, IN PRESS. IEEE (2015)Google Scholar
  55. 55.
    Pask, G.: Physical analogues to the growth of a concept. Mechanisation of Thought Processes, no. 10 in National Physical Laboratory Symposium, pp. 877–922. Her Majesty’s Stationery Office, London, UK (1958)Google Scholar
  56. 56.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd (2008)Google Scholar
  57. 57.
    Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for dynamical hierarchies. Artif. Life 7(4), 329–353 (2001)CrossRefGoogle Scholar
  58. 58.
    Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. CoRR abs/1402.1128 (2014). http://arxiv.org/abs/1402.1128
  59. 59.
  60. 60.
    Scholl, A., Klein, R., Jürgens, C.: Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 24(7), 627–645 (1997)MATHCrossRefGoogle Scholar
  61. 61.
    Sekanina, L.: Evolvable components: From Theory to Hardware Implementations. Natural Computing. Springer (2004)Google Scholar
  62. 62.
    Sekanina, L.: Design methods for polymorphic digital circuits. In: Proc. of the 8th IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop DDECS, pp. 145–150 (2005)Google Scholar
  63. 63.
    Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Opt. 11(4), 341–359 (1997)Google Scholar
  64. 64.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, Quebec, Canada, pp. 3104–3112 (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
  65. 65.
    Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: T. Higuchi, M. Iwata, L. Weixin (eds.) Proceedings of the 1st International Conference on Evolvable Systems (ICES’96). LNCS, vol. 1259, pp. 390–405. Springer (1997)Google Scholar
  66. 66.
    Thompson, A.: Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Distinguished dissertation series. Springer (1998)Google Scholar
  67. 67.
    Thompson, A., Harvey, I., Husbands, P.: Unconstrained evolution and hard consequences. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware: The Evolutionary Engineering Approach. LNCS, vol. 1062, pp. 136–165. Springer (1996)Google Scholar
  68. 68.
    Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in design space: unconventional electronics design through artificial evolution. IEEE Trans. Evol. Comput. 3(3), 167–196 (1999)CrossRefGoogle Scholar
  69. 69.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)MathSciNetMATHGoogle Scholar
  70. 70.
    van Damme, R., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W.: A simulation tool for evolving functionalities in disordered nanoparticle networks. Preprint (2015)Google Scholar
  71. 71.
    Wasshuber, C.: Computational Single-Electronics. Springer, Berlin (2001)Google Scholar
  72. 72.
    Wasshuber, C.: Single-Electronics – How it works. How it’s used. How it’s simulated. In: Proceedings of the International Symposium on Quality Electronic Design, pp. 502–507 (2012)Google Scholar
  73. 73.
    Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and circuits. IEEE Trans. Computer-Aided Des. Integr. Circuits Syst. 16, 937–944 (1997)CrossRefGoogle Scholar
  74. 74.
    Wolfram, S.: Universality and complexity in cellular automata. Phys. D: Nonlinear Phenom. 10(1), 1–35 (1984)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Yoshihito, A.: Information processing using intelligent materials - information-processing architectures for material processors. Intell. Mater. Syst. Struct. 5, 418–423 (1994)CrossRefGoogle Scholar
  76. 76.
    Zauner, K.P.: From prescriptive programming of solid-state devices to orchestrated self-organisation of informed matter. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming Paradigms: International Workshop UPP 2004, vol. 3566, pp. 47–55. Springer (2004)Google Scholar
  77. 77.
    Zebulum, R., Pacheco, M., Vellasco, M.: Evolutionary Electronics – Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. The CRC Press International Series on Computational Intelligence (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Hajo Broersma
    • 1
  • Julian F. Miller
    • 2
  • Stefano Nichele
    • 3
  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.University of YorkHeslington, YorkEngland
  3. 3.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations