Validation of Transcriptomics-Based In Vitro Methods

  • Raffaella CorviEmail author
  • Mireia Vilardell
  • Jiri Aubrecht
  • Aldert Piersma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 856)


The field of transcriptomics has expanded rapidly during the last decades. This methodology provides an exceptional framework to study not only molecular changes underlying the adverse effects of a given compound, but also to understand its Mode of Action (MoA). However, the implementation of transcriptomics-based tests within the regulatory arena is not a straightforward process. One of the major obstacles in their regulatory implementation is still the interpretation of this new class of data and the judgment of the level of confidence of these tests. A key element in the regulatory acceptance of transcriptomics-based tests is validation, which still represents a major challenge. Although important advances have been made in the development and standardisation of such tests, to date there is limited experience with their validation. Taking into account the experience acquired so far, this chapter describes those aspects that were identified as important in the validation process of transcriptomics-based tests, including the assessment of standardisation, reliability and relevance. It also critically discusses the challenges posed to validation in relation to the specific characteristics of these approaches and their application in the wider context of testing strategies.


Transcriptomics Validation Toxicogenomics In vitro tests Bioinformatics workflow 


  1. Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485CrossRefPubMedGoogle Scholar
  2. Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65, Erratum in: Nat Rev Genet 7(5):406CrossRefPubMedGoogle Scholar
  3. Bammler T, Beyer RP, Bhattacharya S et al (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2(5):351–356, Erratum in: Nat Methods 2(6):477CrossRefPubMedGoogle Scholar
  4. Bourdon-Lacombe JA, Moffat ID, Deveau M et al (2015) Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Toxicol Appl Pharmacol 289(3):573–588Google Scholar
  5. Boverhof D, Gollapudi BB (eds) (2011) Applications of toxicogenomics in safety evaluation and risk assessment. Wiley, New YorkGoogle Scholar
  6. Buick JK, Moffat I, Williams A et al (2015) Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells. Environ Mol Mutagen 56:520–534. doi: 10.1002/em.21940 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chu TM, Deng S, Wolfinger R et al (2004) Cross-site comparison of gene expression data reveals high similarity. Environ Health Perspect 112(4):449–455CrossRefPubMedPubMedCentralGoogle Scholar
  8. Corvi R, Ahr HJ, Albertini S et al (2006) Meeting report: validation of toxicogenomics-based test systems: ECVAM-ICCVAM/NICEATM considerations for regulatory use. Environ Health Perspect 114(3):420–429CrossRefPubMedGoogle Scholar
  9. Croft D, Mundo AF, Haw R et al (2013) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–D477. doi: 10.1093/nar/gkt1102 PubMedPubMedCentralGoogle Scholar
  10. Dobbin K, Simon R (2005) Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6(1):27–38, Erratum in: Biostatistics (2005) 6(2):348CrossRefPubMedGoogle Scholar
  11. Dobbin KK, Simon RM (2007) Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8(1):101–117CrossRefPubMedGoogle Scholar
  12. Doktorova TY, Yildirimman R, Ceelen L et al (2014) Testing chemical carcinogenicity by using a transcriptomics HEPARG-based model? EXCLI J 13:623–637PubMedPubMedCentralGoogle Scholar
  13. ECETOC Workshop report No 25 (2013) Omics and risk assessment.
  14. Ellinger-Ziegelbauer H, Fostel JM, Aruga C et al (2009) Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms. Toxicol Sci 110(2):341–352Google Scholar
  15. Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2014) Guidance for industry and FDA staff—qualification process for drug development tools.
  16. Goetz AK, Singh BP, Battalora M et al (2011) Current and future use of genomics data in toxicology: opportunities and challenges for regulatory applications. Regul Toxicol Pharmacol 61:141–153CrossRefPubMedGoogle Scholar
  17. Goodsaid FM, Amur S, Aubrecht J et al (2010) Voluntary exploratory data submissions to the US FDA and the EMA: experience and impact. Nat Rev Drug Discov 9(6):435–445CrossRefPubMedGoogle Scholar
  18. Hahne F, Mehrle A, Arlt D et al (2008) Extending pathways based on gene lists using InterPro domain signatures. BMC Bioinformatics 9:3CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hamadeh HK, Bushel P, Paules R, Afshari CA (2001) Discovery in toxicology: mediation by gene expression array technology. J Biochem Mol Toxicol 15(5):231–242CrossRefPubMedGoogle Scholar
  20. Hamadeh HK, Bushel PR, Jayadev S et al (2002a) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67(2):219–231CrossRefPubMedGoogle Scholar
  21. Hamadeh HK, Knight BL, Haugen AC et al (2002b) Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol 30(4):470–482CrossRefPubMedGoogle Scholar
  22. Hartung T, Bremer S, Casati S et al (2004) A modular approach to the ECVAM principles on test validity. Altern Lab Anim 32(5):467–472PubMedGoogle Scholar
  23. Herwig R, Gmuender H, Corvi R et al (2015) Inter-laboratory study of human in vitro toxicogenomics-based tests as alternative methods for evaluating chemical carcinogenicity: a bioinformatics perspective. Archiv Toxicol, doi: 10.1007/s00204-015-1617-3 Google Scholar
  24. Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2(5):345–350CrossRefPubMedGoogle Scholar
  25. Jennings P, Aydin S, Bennett J et al (2009) Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro 23:486–499CrossRefPubMedGoogle Scholar
  26. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D793–D800CrossRefPubMedGoogle Scholar
  27. Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049CrossRefGoogle Scholar
  28. Kinsner-Ovaskainen A, Maxwell G, Kreysa J et al (2012) Report of the EPAA-ECVAM workshop on the validation of Integrated Testing Strategies (ITS). Altern Lab Anim 40(3):175–181PubMedGoogle Scholar
  29. Landesmann B, Mennecozzi M, Berggren E, Whelan M (2013) Adverse outcome pathway-based screening strategies for an animal-free safety assessment of chemicals. Altern Lab Anim 41(6):461–471PubMedGoogle Scholar
  30. Larkin JE, Frank BC, Gavras H et al (2005) Independence and reproducibility across microarray platforms. Nat Methods 2(5):337–344CrossRefPubMedGoogle Scholar
  31. Li HH, Hyduke DR, Chen R et al (2015) Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells. Environ Mol Mutagen 56:505–519. doi: 10.1002/em.21941 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Luo J, Schumacher M, Scherer A et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 10(4):278–291CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller CJ, Kassem HS, Pepper SD et al (2003) Mycoplasma infection significantly alters microarray gene expression profiles. Biotechniques 35(4):812–814PubMedGoogle Scholar
  34. Patlewicz G, Ball N, Becker RA et al (2014) Read-across approaches - misconceptions, promises and challenges ahead. ALTEX 31(4):387–396CrossRefPubMedGoogle Scholar
  35. Paules RS, Aubrecht J, Corvi R et al (2011) Moving forward in human cancer risk assessment. Environ Health Perspect 119(6):739–743CrossRefPubMedGoogle Scholar
  36. Pettit S, des Etages SA, Mylecraine L et al (2010) Current and future applications of toxicogenomics: results summary of a survey from the HESI Genomics State of Science Subcommittee. Environ Health Perspect 118(7):992–997CrossRefPubMedPubMedCentralGoogle Scholar
  37. Piersma AH, Hernandez LG, van Benthem J et al (2011) Reproductive toxicants have a threshold of adversity. Crit Rev Toxicol 41(6):545–554CrossRefPubMedGoogle Scholar
  38. Piersma AH, Bosgra S, van Duursen MB et al (2013) Evaluation of an alternative in vitro test battery for detecting reproductive toxicants. Reprod Toxicol 38:53–64CrossRefPubMedGoogle Scholar
  39. Piersma AH, Ezendam J, Luijten M et al (2014) A critical appraisal of the process of regulatory implementation of novel in vivo and in vitro methods for chemical hazard and risk assessment. Crit Rev Toxicol 24:1–19Google Scholar
  40. Römer M, Eichmer J, Metzger U et al (2014) Cross-platform toxicogenomics for the prediction of non-genotoxic hepatocarcinogenesis in rat. PLoS One 9(5):e97640. doi: 10.1371/journal.pone.0097640 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Scott DJ, Devonshire AS, Adeleye YA et al (2011) Inter- and intra-laboratory study to determine the reproducibility of toxicogenomics datasets. Toxicology 290:50–58CrossRefPubMedGoogle Scholar
  42. Shi L, Campbell G, Jones WD et al (2010) The Microarray Quality Control (MAQC)—II study of common practices for the development and validation of microarray/based predictive models. Nat Biotechnol 28(8):827–838CrossRefPubMedGoogle Scholar
  43. Steiner G, Suter L, Boess F et al (2004) Discriminating different classes of toxicants by transcript profiling. Environ Health Perspect 112(12):1236–1248CrossRefPubMedPubMedCentralGoogle Scholar
  44. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tarca AL, Lauria M, Unger M et al (2013) Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics 29(22):2892–2899CrossRefPubMedPubMedCentralGoogle Scholar
  46. Venet D, Dumont JE, Detours V (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7(10):e1002240CrossRefPubMedPubMedCentralGoogle Scholar
  47. Waring JF, Ulrich RG, Flint N et al (2004) Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene. Environ Health Perspect 112(4):439–448CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wen Z, Wang C, Shi Q et al (2010) Evaluation of gene expression data generated from expired Affymetrix GeneChip® microarrays using MAQC reference RNA samples. BMC Bioinformatics 11(Suppl 6):S10CrossRefPubMedPubMedCentralGoogle Scholar
  49. Worth A, Barroso J, Bremer S et al (2014) Alternative methods for regulatory toxicology – a state-of-the-art review. EUR 26797.
  50. Yildirimman R, Brolén G, Vilardell M et al (2011) Human embryonic stem cell derived epatocyte-like cells as a tool for in vitro hazard assessment of chemical arcinogenicity. Toxicol Sci 124(2):278–290CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Raffaella Corvi
    • 1
    Email author
  • Mireia Vilardell
    • 1
  • Jiri Aubrecht
    • 2
  • Aldert Piersma
    • 3
    • 4
  1. 1.European Commission, Joint Research Centre (JRC)IspraItaly
  2. 2.Pfizer Global Research and DevelopmentGrotonUSA
  3. 3.Center for Health Protection, National Institute for Public Health and the Environment RIVMBilthovenThe Netherlands
  4. 4.Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations